流体力学与飞行力学

基于NURBS方法的机翼气动外形优化

展开
  • 1. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 四川 绵阳 621000;
    2. 中国空气动力研究与发展中心 高速空气动力研究所, 四川 绵阳 621000
马晓永(1979-) 男,博士研究生,助理研究员。主要研究方向:气动外形优化。 Tel: 0816-2462264 E-mail: mxycardc@mail.ustc.edu.cn; 吴文华(1974-) 男,副研究员。主要研究方向:飞行器优化设计。 Tel: 0816-7067916 E-mail: 619677947@qq.com; 杨党国(1980-) 男,博士,助理研究员。主要研究方向:飞行器设计。 Tel: 0816-2462268 E-mail: yangdg-cardc@163.com

收稿日期: 2010-12-06

  修回日期: 2011-02-28

  网络出版日期: 2011-09-16

基金资助

国际科技合作项目(2007DFA70880)

Aerodynamic Shape Optimization for Wing Based on Non-uniform Rational B-spline

Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research & Development Center, Mianyang 621000, China;
    2. High Speed Aerodynamics Institute, China Aerodynamics Research & Development Center, Mianyang 621000, China

Received date: 2010-12-06

  Revised date: 2011-02-28

  Online published: 2011-09-16

摘要

飞行器气动外形优化就是将设计对象的空气动力学性能分析与最优化方法相结合,通过不断改变设计对象的外形,使其气动性能在满足一定约束条件下达到最优。气动外形优化是一个涉及几何参数化、动网格、流场计算和寻优算法的综合应用平台。随着计算流体力学(CFD)的发展以及高性能计算机的使用,气动外形优化在现代飞行器设计中的作用愈加重要。为此建立了基于非均匀有理B样条(NURBS)参数化方法的机翼气动外形优化平台。优化过程中采用弹性网格变形法,由雷诺平均Navier-Stokes方程组和Baldwin-Lomax代数湍流模型求解流场,并用离散伴随方法进行目标函数梯度求解,最后结合序列二次规划(SQP)方法进行优化迭代。通过对ONERA M6机翼在跨声速条件下进行优化分析,结果表明在保持升力系数和机翼容积不变,马赫数Ma=0.84、迎角α=3.06°时,优化后机翼表面压力系数有明显变化,上翼面λ激波明显减弱,相对于原始外形优化后机翼阻力系数减小0.002 5,降幅达13.1%;优化实例验证了该方法有效可行。

本文引用格式

马晓永, 范召林, 吴文华, 杨党国 . 基于NURBS方法的机翼气动外形优化[J]. 航空学报, 2011 , 32(9) : 1616 -1621 . DOI: CNKI:11-1929/V.20110419.1702.004

Abstract

Aerodynamic design optimization is to find the optimum of aircraft aerodynamic performance under certain constraints by changing the shape of the designed object. It facilitates the design process by automating both the performance analysis and the optimization method. Aerodynamic design optimization is an integrated application of geometry parameterization, grid update, flow field solver and optimization method, and it has contributed to the design of aircraft with the maturity of computational fluid dynamics (CFD) and the progress of computer performance.This paper presents an aerodynamic wing shape optimization method based on non-uniform rational B-spline (NURBS), in which the mesh deformation is used with a spring-based smoothing method. The Reynolds-averaged Navier-Stokes equations with an algebraic turbulence model of Baldwin-Lomax are used to solve the flow field, and a discrete-adjoint method inexpensively computes the sensitivities of the function with respect to design variables, to build the gradient of the objective function. Finally, an sequential quadratic programming (SQP) method is employed to find the optimum. An aerodynamic shape optimization is performed to minimize the drag of wing ONERA M6 at transonic Ma=0.84 and α=3.06°. As a result of the optimization, the pressure coefficient on the up-wing surface is changed obviously, and the λ shock wave is much reduced. The drag coefficient loses 25 drag counts, which means a 13.1% drag improvement with the constraints of the lift and volume. This application to an aerodynamic design optimization validates the system of optimization and design based on NURBS.

参考文献

[1] Hicks R M, Murman E M, Vanderplaats G N. An assessment of airfoil design by numerical optimization. NASA-TM-X-3092, 1974.

[2] Hicks R M, Henne P. Wing design by numerical optimization[J]. Journal of Aircraft, 1978, 15(7): 407-412.

[3] Jameson A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 13(3): 233-260.

[4] 刘润泽, 张晓东, 安柏涛, 等. 非均匀有理B样条曲线及节点插入算法在透平叶片优化设计中的应用[J]. 航空动力学报, 2010, 25(2): 451-458. Liu Runze, Zhang Xiaodong, An Botao, et al. Application of non-uniform rational B-spline curve and knot insertion algorithm to turbine blade optimization[J]. Journal of Aerospace Power, 2010, 25(2): 451-458. (in Chinese)

[5] Samareh J A. A survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization[J]. AIAA Journal, 2001, 39(5): 877-884.

[6] Wataru Y, Sylvain M, Gérald C. Geometry parameterization and computational mesh deformation by physics-based direct manipulation approaches[J]. AIAA Journal, 2010, 48(8): 1817-1832.

[7] Jason E H, David W Z. Aerodynamic optimization algorithm with integrated geometry parameterization and mesh movement[J]. AIAA Journal, 2010, 48(2): 400-413.

[8] 王晓锋, 席光. 基于Kriging模型的翼型气动性能优化设计[J]. 航空学报, 2005, 26(5): 545-549. Wang Xiaofeng, Xi Guang. Aerodynamic optimization design for airfoil based on Kriging model[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(5): 545-549. (in Chinese)

[9] 杨旭东, 乔志德. 基于共轭方程法的跨音速机翼气动力优化设计[J]. 航空学报, 2003, 34(1): 2-5. Yang Xudong, Qiao Zhide. Optimum aerodynamic design of transonic wing based on adjoint equations method[J]. Acta Aeronautica et Astronautica Sinica, 2003, 34(1): 2-5. (in Chinese)

[10] 孙奕捷, 申功璋. 飞翼布局飞机控制/气动/隐身多学科优化设计[J]. 北京航空航天大学学报, 2009, 35(11): 1357-1360. Sun Yijie, Shen Gongzhang. Multidisciplinary optimization of control-aerodynamic-stealth for flying wing aircraft design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(11): 1357-1360. (in Chinese)

[11] Vijay N J, Felipe A C V, Raphael T H, et al. Design optimization of a bendable UAV wing under uncertainty. AIAA-2010-2761, 2010.

[12] Kim H J, Liou M S. Aerodynamic optimization using a hybrid moga-local search method. AIAA-2010-2911, 2010.

[13] Laurenceau J, Meaux M, Montagnac M, et al. Comparison of gradient-based and gradient-enhanced response-surface-based optimizers[J]. AIAA Journal, 2010, 48(5): 981-994.

[14] Jameson A, Martinelli L, Pierce N A. Optimum aerodynamic design using the Navier-Stokes equations[J]. Theoretical and Computational Fluid Dynamics, 1998(10): 213-237.

[15] Leoviriyakit K, Jameson A. Multi-point wing planform optimization via control theory. AIAA-2005-450, 2005.

[16] Takenaka K, Obayashi S, Nakahashi K, et al. The application of MDO technologies to the design of a high performance small jet aircraft. AIAA-2005-4797, 2005.

[17] Jason E H, David W Z. Integrated geometry parametrization and grid movement using B-spline meshes. AIAA-2008-6079, 2008.

[18] Lepine J, Guibault F, Trepanier J, et al. Optimized non-uniform rational B-spline geometrical representation for aerodynamic design of wings[J]. AIAA Journal, 2001, 39(11): 2033-2041.

[19] Castonguay P, Nadarajah S. Effect of shape parameterization on aerodynamic shape optimization. AIAA-2007-59, 2007.

[20] Arash M, Patrice C, Siva K N. Survey of shape parameterization techniques and its effect on three-dimensional aerodynamic shape optimization. AIAA-2007-3837, 2007.

[21] Pandya M J, Baysal O. Gradient-based aerodynamic shape optimization using alternating direction implicit method[J]. Journal of Aircraft, 1997, 34(3): 346-352.

[22] Baldwin B S, Lomax H. Thin layer approximation and algebraic model for separated turbulent flows. AIAA-1978-257, 1978.

[23] Chakravarthy S R, Osher S. Numerical experiments with the Osher upwind scheme for the Euler equations[J]. AIAA Journal, 1983, 21(9): 1241-1248.

[24] Jameson A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3): 233-260.

[25] Wilson R B. A simplicial algorithm for concave programming. Boston: Harvard University, 1963.
文章导航

/