传感器自身的位置误差对辐射源的无源定位精度可能有较大影响,详细分析并推导了在存在传感器位置误差条件下,仅使用到达频率差(FDOA)参数对辐射源定位时,定位精度的克拉美罗下限(CRLB)和均方误差(MSE)。在传感器位置误差条件下,提出仅用FDOA来同时估计辐射源和传感器位置的泰勒级数方法,并证明该定位方法理论上的MSE和CRLB一致。实验中在给定较好初始解的情况下,泰勒级数方法的估计精度基本上达到了CRLB,同时也验证了定位误差CRLB和MSE性能理论分析的正确性。
The accuracy of passive localization is very sensitive to erroneous receiver positions. This paper performs a Cramer-Rao lower bound(CRLB)and a mean-square error(MSE)analysis for passive localization using frequency-difference-of-arrival(FDOA)only. An iterative algorithm, the Taylor-series method, is applied to estimate the location of an emitter and the positions of receivers using FDOA measurements when the receivers have random position errors. The theoretical MSE of the algorithm is derived and proved to meet the CRLB. Given a good initial solution guess, simulation results show that the estimation accuracy approximately attains the CRLB and demonstrate the feasibility of the accuracy analysis.
[1] Cater G C. Time delay estimation for passive sonar signal processing[J]. IEEE Transactions on Acoust, Speech and Signal Processing, 1981, 29(3): 462-470.
[2] Weinstein E. Optimal source localization and tracking from passive array measurements[J]. IEEE Transactions on Acoust, Speech and Signal Processing, 1982, 30(1): 69-76.
[3] Ho K C, Xu W W. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2453-2463.
[4] Ho K C, Xiaoning L and Kovavisaruch L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution[J]. IEEE Transactions on Signal Processing, 2007, 55(2): 684-696.
[5] Schau H, Robinson A Z. Passive source localization employing intersecting spherical surfaces from time-of-arrival differences[J]. IEEE Transactions on Acoust, Speech and Signal Processing, 1987, 35(8): 1223-1225.
[6] Abel J S, Smith J O. The spherical interpolation method for closed-form passive source localization using range difference measurements//Proceeding of ICASSP-87.1987: 471-474.
[7] Abel J S. A divide and conquer approach to least-squares estimation [J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(2): 423-427.
[8] 席林东,占明峰,邢昌风,等. 基于多声纳基阵FDOA的联合定位技术及精度分析[J],船舶电子工程,2008, 28(9): 91-94,195. Xi Lindong, Zhan Mingfeng, Xing Changfeng, et al. Joint location and accuracy analysis using FDOA based on multiple sonar arrays [J]. Ship Electronic Engineering, 2008, 28(9): 91-94,195 (in Chinese)
[9] 卢鑫,朱伟强,郑同良. 多普勒频差无源定位方法研究[J]. 航天电子对抗,2008, 24(3): 40-43. Lu Xin, Zhu Weiqiang, Zheng Tongliang. Passive location using Doppler FDOA method[J]. Aerospace Electronic Warfare, 2008, 24(3): 40-43. (in Chinese)
[10] 张波,石昭祥. 差分多普勒定位技术的仿真研究[J]. 电光与控制,2009, 16(3): 13-16. Zhang Bo, Shi Zhaoxiang. Simulation of FDOA locating systems [J]. Electronic Optics & Control, 2009, 16(3): 13-16. (in Chinese)
[11] Foy W H. Position-location solution by Taylor-series estimation [J]. IEEE Transactions on Aerospace and Electronic Systems, 1976, 12(2): 187-194.
[12] Kovavisaruch L, Ho K C. Modified taylor-series method for source and receiver localization using TDOA measurements with erroneous receiver positions//ISCAS. 2005: 2295-2298.
[13] Kay S M. Fundamentals of statistical signal process, estimation theory[M]. Englewood Cliffs, NJ: Prentice-Hall, 1993.
[14] 张贤达. 矩阵分析与应用[M]. 北京:清华大学出版社, 2004: 65-69. Zhang Xianda. Matrix analysis and applications[M]. Beijing: Tsinghua University Press, 2004: 65-69. (in Chinese)
[15] Xiong J Y, Wang W, Zhu Z L. An improved Taylor algorithm in TDOA subscriber position location//Proceeding of ICCT. 2003: 981-984.