电子与自动控制

新型快速Terminal滑模及其在近空间飞行器上的应用

展开
  • 南京航空航天大学 自动化学院,江苏 南京 210016
蒲明(1981- ) 男, 博士研究生。 主要研究方向: 滑模控制, 飞行器控制。 Tel: 025-84893084 E-mail: msznuaa@163.com 吴庆宪(1955- ) 男, 教授, 博士生导师。 主要研究方向: 飞行器控制, 非线性控制。 Tel: 025-84893084 E-mail: wuqingxian@nuaa.edu.cn 姜长生(1942- ) 男, 教授, 博士生导师。 主要研究方向: 飞行器控制, 非线性控制。 Tel: 025-84893084 E-mail: jiangcs@nuaa.edu.cn 程路(1985- ) 男, 博士研究生。 主要研究方向: 飞行器控制, 预测控制。 Tel: 025-84893084 E-mail: chenglu8848@163.com

收稿日期: 2010-10-12

  修回日期: 2011-01-04

  网络出版日期: 2011-07-23

基金资助

国家自然科学基金(90716028,60974106)

New Fast Terminal Sliding Mode and Its Application to Near Space Vehicles

Expand
  • College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2010-10-12

  Revised date: 2011-01-04

  Online published: 2011-07-23

摘要

为加快Terminal滑模收敛速度,并避免控制器奇异,首先分析了Terminal滑模产生奇异的原因,基于李代数给出Terminal滑模控制器非奇异判据。然后,设计了两种新型非奇异快速Terminal滑模,其收敛速度在任意点均快于现有标准快速Terminal滑模;给出了收敛时间公式。将新型快速Terminal滑模与动态滑模相结合,避免了控制器抖振,设计了近空间飞行器快、慢回路控制器。采用改进的非线性干扰观测器逼近近空间飞行器复合干扰,进一步提高控制精度。基于Lyapunov理论,严格证明了系统的稳定性。最后,进行了仿真验证。

本文引用格式

蒲明, 吴庆宪, 姜长生, 程路 . 新型快速Terminal滑模及其在近空间飞行器上的应用[J]. 航空学报, 2011 , 32(7) : 1283 -1291 . DOI: CNKI:11-1929/V.20110330.1325.008

Abstract

To accelerate the convergence of a terminal sliding mode and avoid the singularity of the controller, an analysis for the cause of singularity in terminal sliding mode is presented in this paper. Based on Lie algebra,the nonsingular criterion is provided for the terminal sliding mode controller. Thereafter, two novel nonsingular fast terminal sliding modes are designed with convergence speed faster than that of a normal fast terminal sliding mode at any points. The formula of convergence time is derived. The new fast terminal sliding mode is combined with the dynamic sliding mode to eliminate chattering. Then, controllers are designed for the fast loop and slow loop of a near space vehicle. In order to improve the control effect, a nonlinear disturbance observer is used to approximate the compound disturbances. By means of the Lyapunov theorem, the system is proved to be stable. Finally, simulation is conducted.

参考文献

[1] 董朝阳, 王枫, 高晓颖, 等. 基于自适应滑模与模糊控制的导弹直接力/气动力复合控制系统优化设计[J]. 航空学报, 2008, 29(1): 165-169. Dong Chaoyang, Wang Feng, Gao Xiaoying, et al. Missile reaction-jet/aerodynamic compound control system design based on adaptive sliding mode control and fuzzy logic[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 165-169. (in Chinese)

[2] Jin Y Q, Liu X D, Qiu W, et al. Time varying sliding mode controls in rigid spacecraft attitude tracking[J]. Chinese Journal of Aeronautics, 2008, 21(4): 352-360.

[3] Man Z H, Yu X H. Terminal sliding mode control of MIMO linear systems [J]. IEEE Transactions on Circuits and Systems, 1997, 44(11): 1065-1070.

[4] Yu S H, Yu X H, Man Z H. A fuzzy neural network approximator with fast terminal sliding mode and its applications[J]. Fuzzy Sets and Systems, 2004, 148(3): 469-486.

[5] 王新华, 陈增强, 袁著祉. 全程快速非线性跟踪-微分器[J]. 控制理论与应用, 2003, 20(6): 875-878. Wang Xinhua, Chen Zengqiang, Yuan Zhuzhi. Nonlinear tracking differentiator with high speed in whole course[J]. Journal of Control Theory and Applications, 2003, 20(6): 875-878. (in Chinese)

[6] 史永丽, 侯朝桢. 改进的非线性跟踪微分器设计[J]. 控制与决策, 2008, 23(6): 647-650. Shi Yongli, Hou Chaozhen. Design of improved nonlinear tracking differentiator [J]. Journal of Control and Decision, 2008, 23(6): 647-650. (in Chinese)

[7] Man Z H, Paplinski A P, Wu H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators [J]. IEEE Transactions on Automatic Control, 1994, 39(12): 2464-2469.

[8] Feng Y, Yu X H, Man Z H. Non-singular terminal sliding mode control of rigid manipulators [J]. Automatica, 2002, 38(12): 2159-2167.

[9] 张军. 近空间飞行器非线性不确定飞行运动的鲁棒自适应控制. 南京: 南京航空航天大学自动化学院, 2009. Zhang Jun. Robust adaptive control for nonlinear uncertain flight moving systems of near space vehicle . Nanjing: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)

[10] 王高雄, 周之铭. 常微分方程[M]. 北京: 高等教育出版社, 2006. Wang Gaoxiong, Zhou Zhiming. Ordinary differential equation [M]. Beijing: High Education Press, 2006. (in Chinese)

[11] Chen W H. A nonlinear disturbance observer for robotic manipulators [J]. IEEE Transactions on Industrial Electronics, 2000, 47(4): 932-938.

[12] 吴玉香, 胡跃明. 二阶动态滑模控制在移动机械臂输出跟踪中的应用[J]. 控制理论与应用, 2006, 23(3): 411-415. Wu Yuxiang, Hu Yueming. Second order dynamic sliding mode control and its application to output tracking of mobile manipulators [J]. Journal of Control Theory and Applications, 2006, 23(3): 411-415. (in Chinese)

[13] Levant A. High-order sliding modes, differentiation and output-feedback control[J]. International Journal of Control, 2003, 76(9-10): 924-941.

[14] Levant A. Finite differences in homogeneous discontinuous control[J]. IEEE Transactions on Automatic Control, 2007, 52(7): 1208-1217.

[15] 黄国勇, 姜长生, 王玉惠. 基于快速模糊干扰观测器的UASV再入Terminal滑模控制[J]. 宇航学报, 2007, 28(2): 292-297. Huang Guoyong, Jiang Changsheng, Wang Yuhui. Research of terminal sliding mode control based on fast fuzzy disturbance observer for UASV re-entry [J]. Journal of Astronautics, 2007, 28(2): 292-297. (in Chinese)
文章导航

/