固体力学与飞行器总体设计

基于超高速碰撞仿真的卫星碰撞解体碎片分析

展开
  • 北京航空航天大学 宇航学院,北京 100191
张晓天(1984- ) 男, 博士研究生。 主要研究方向: 冲击破碎仿 真方法及其在空间碎片问题中的应用。 E-mail: u_lever@sa.buaa.edu.cn 贾光辉(1965- ) 男, 博士, 副教授。 主要研究方向: 航天器动力学与空间碎片, 结构动力学与仿真, 动态断裂。 Tel: 010-82339067 E-mail: jiaguanghui@buaa.edu.cn 黄海(1963- ) 男, 博士, 教授。 主要研究方向: 飞行器结构优化, 空间智能结构及其控制, 航天飞行器新概念。 E-mail: hhuang@buaa.edu.cn

收稿日期: 2010-11-01

  修回日期: 2010-11-29

  网络出版日期: 2011-07-23

Debris Analysis of On-orbit Satellite Collision Based on Hypervelocity Impact Simulation

Expand
  • School of Astronautics, Beihang University, Beijing 100191, China

Received date: 2010-11-01

  Revised date: 2010-11-29

  Online published: 2011-07-23

摘要

使用超高速碰撞数值仿真技术,结合自主开发的碎片识别统计方法,以Iridium33与Cosmos2251卫星在轨撞击解体事件为例,进行了在轨卫星碰撞解体碎片分析。通过有限元方法(FEM)与光滑粒子流体动力学(SPH)的复合算法,从图形角度识别出碎片云中的大碎片,然后利用二值图转换与二值图连通域的快速统计,提取出了碎片数目、尺寸、位置、速度和质量等信息。碎片识别结果表明大部分大碎片由Cosmos2251产生,大碎片统计结果与空间监测网(SSN)观测值相符,表明了该方法的有效性。研究结果同时表明正撞击区内的材料大部分转化为了小碎片,大碎片则由远离正撞击区的材料产生。为了度量撞击破碎程度,定义了等效正撞击质量的特征量,通过分析发现大碎片的总质量只与等效正撞击质量相关,与撞击点无关,对于小碎片总质量也有相同的结论。

本文引用格式

张晓天, 贾光辉, 黄海 . 基于超高速碰撞仿真的卫星碰撞解体碎片分析[J]. 航空学报, 2011 , 32(7) : 1224 -1230 . DOI: CNKI:11-1929/V.20110330.1305.004

Abstract

Debris analysis method of on-orbit satellite collision is presented in this paper. Hypervelocity impact simulation technique and self-developed fragment identification and statistics method are applied to analyzing fragmentation process of Iridium33 and Cosmos2251 collision as an instance. Using a combined method of finite element method (FEM) and smoothed particle hydrodynamics (SPH), large fragments are identified from the debris cloud. Then with binary image conversion and statistics of connectedness regions on the image, the amount, size, position, velocity and mass of each fragment are determined. Simulation results show that most large fragments are generated from Cosmos2251 and the quantity of fragments is in agreement with space surveillance network (SSN) observation data, which shows the effectiveness of the proposed method. Most materials in the normal impact region are converted into small fragments after the impact while the large fragments are from materials far from the normal impact region. To measure the degree of spall, equivalent normal impact mass is defined. The computation results show that the total mass of either large or small fragments is only determined by equivalent normal impact mass despite various impact locations.

参考文献

[1] Zukas J A. Impact dynamics[M]. New York: Wiley, 1989.

[2] Monaghan J J. Shock simulation by the particle method SPH[J]. Journal of Computational Physics, 1983, 52(2): 374-389.

[3] Benz W. Smooth particle hydrodynamics: a review//Proceedings of the NATO Advanced Research Workshop on the Numerical Modelling of Nonlinear Stellar Pulsation Problems and Prospects.1989.

[4] 刘有英. 基于爆炸力学的在轨卫星裂解模型与评估分析. 北京航空航天大学博士后研究工作报告. 北京:北京航空航天大学宇航学院, 2010. Liu Youying. Analysis of on-orbit satellite breakup model and assessment based on mechanics of explosion. Post-doctor Research Report of Beihang University. Beijing: Schol of Astronautics, Beihang University, 2010. (in Chinese)

[5] Johnson N L, Krisko P H. NASA’s new breakup model of Evolve 4.0[J]. Advance in Space Research, 2001, 28(9): 1377-1384.

[6] 汪颋. 空间碎片演化及对航天器碰撞威胁分析. 北京: 北京航空航天大学宇航学院, 2009. Wang Ting. Orbital debris evolution and threat to spacecraft. Beijing: School of Astronautics, Beihang University, 2009.(in Chinese)

[7] Stansbery G, Matney M, Liou J. A comparison of catastrophic on orbit collision//The Advanced Maui Optical and Space Surveillance Technologies Conference. 2008.

[8] Zhang X T, Jia G H, Huang H. Fragments identification and statistics method of hypervelocity impact SPH simulation[J]. Chinese Journal of Astronautics, 2011, 24(1): 18-24.

[9] NORAD two-line element sets current data. (2010-9-26) .http://celestrack.com/NORAD/elements.

[10] 龚自正,李明. 美俄卫星太空碰撞事件及对航天活动的影响[J]. 航天器环境工程, 2009, 26(2): 101-106. Gong Zizheng, Li Ming. The giant collision of US-Russia satellites in space and its influences on spaceflight activities[J].Spacecraft Environment Engineering, 2009, 26(2): 101-106.(in Chinese)

[11] 冯昊,向开恒. 美俄卫星碰撞事件验证及其对我国卫星的影响分析[J]. 航天器工程, 2009, 18(5): 20-27. Feng Hao, Xiang Kaiheng. Verification of collision between American and Russian satellite and analysis of impact on China’s satellite[J].Spacecraft Engineering, 2009, 18(5): 20-27.(in Chinese)

[12] 李怡勇,李智,沈怀荣,等. 美俄卫星撞击碎片分析[J].装备指挥技术学院学报, 2009, 20(2): 60-63. Li Yiyong, Li Zhi, Shen Huairong, et al. Analysis on debris from U.S.’s and Russia’s satellites collision[J]. Journal of the Academy of Equipment Command & Technology, 2009, 20(2): 60-63.(in Chinese)

[13] 汪颋,黄海. 俄美卫星相撞事件初步分析[J]. 空间碎片研究与应用, 2009, 9(1): 26-34. Wang Ting, Huang Hai. Preliminary analysis on the collision event between Russian and American satellites[J]. Space Debris Research and Application, 2009, 9(1): 26-34.(in Chinese)

[14] Hallquist J O. LS-DYNA keyword user’s manual : Version 971[M]. Livermore, California, USA: Livermore Software Technology Corporation, 2007.

[15] Beissel S R, Gerlach C A, Johnson G R. Hypervelocity impact computations with finite elements and meshfree particles[J]. International Journal of Impact Engineering, 2006, 17(1): 291-302.
文章导航

/