流体力学与飞行力学

低速叶型气动反问题设计方法

展开
  • 北京航空航天大学 能源与动力工程学院, 北京 100191
杜磊(1985- ) 男, 博士研究生。 主要研究方向: 叶轮机械CFD。 E-mail: ahxcdl@163.com 宁方飞(1974- ) 男, 博士, 副教授。 主要研究方向: 叶轮机械CFD、 流体高级数值模拟、 数值优化方法及理论。 Tel: 010-82338753 E-mail: fangfei.ning@buaa.edu.cn

收稿日期: 2010-10-22

  修回日期: 2010-11-26

  网络出版日期: 2011-07-23

基金资助

国家自然科学基金(50506001)

Aerodynamic Inverse Design Method for Low Mach Number Airfoils

Expand
  • School of Jet Propulsion, Beihang University, Beijing 100191, China

Received date: 2010-10-22

  Revised date: 2010-11-26

  Online published: 2011-07-23

摘要

低马赫数不可压流动中声速与流速大小差别巨大,采用基于可压缩流动控制方程的计算格式求解流场时,由于数值黏性的污染,解的精度低且收敛性差,通常可使用时间预处理技术来解决这一问题。在基于控制理论的优化方法中,共轭方程的Jacobian矩阵和流动方程的系数矩阵相似,因而在低流动马赫数下,求解共轭方程存在着与求解流动方程相同的数值污染和数值刚性问题。首先推导了带有预处理的Roe格式,然后发展了适合全速度流动的共轭方程求解方法,最后选取翼型和叶栅两个典型算例进行了验证。计算结果表明所发展的方法可很好地用于低马赫数时的气动反问题设计。

本文引用格式

杜磊, 宁方飞 . 低速叶型气动反问题设计方法[J]. 航空学报, 2011 , 32(7) : 1180 -1188 . DOI: CNKI:11-1929/V.20110126.0938.001

Abstract

Because of the large disparity between the acoustic wave speed and the waves convected at fluid speed, the accuracy of the solution to the flow fields of non-compressible low Mach number flows is poor and the convergence rate is bad when using the standard convective scheme based on compressible flows. Generally the preconditioning techniques are used to deal with this problem. In the optimization method based on control theory, the Jacobian matrix of adjoint equations and the mxatri of flow equations are similar, so the same difficulties such as oversized numerical viscosity and numerical rigidity exist when solving the adjoint equations. In this paper, a Roe scheme with preconditioning is first deduced. Then a full speed numerical scheme is developed for adjoint equations. Finally, two typical tests about an airfoil and a cascade are presented. The results indicate that the preconditioned adjoint equation method can develop a low Mach number aerodynamic inverse design efficiently.

参考文献

[1] Turkel E. Preconditioning techniques in computational fluid dynamics[J]. Annual Review of Fluid Mechanics, 1999, 31(1): 385-416.

[2] Turkel E. Preconditioned methods for solving the incompressible and low speed compressible equations[J]. Journal of Computational Physics, 1987, 72: 277-298.

[3] Choi Y H, Merkle C L. The application of preconditioning to viscous flows[J]. Journal of Computational Physics, 1993, 105(2): 207-223.

[4] van Leer B, Lee W T, Roe P L. Characteristic time stepping or local preconditioning of the Euler equations. AIAA-1991-1552, 1991.

[5] Tweedt D L, Chima R V, Turkel E. Preconditioning for numerical simulation of low Machnumber three-dimensional viscous turbomachinery flows. AIAA-1997-1828, 1997.

[6] Briley W R, Taylor L K, Whitfield D L. High resolution viscous flow simulations at arbitrary Mach number[J]. Journal of Computational Physics, 2003, 184(1): 79-105.

[7] Guillard H, Violates C. On the behavior of upwind schemes in the low Mach number limit[J]. Computers and Fluids, 1999, 28(1): 63-86.

[8] Li X S, Gu C W. An all-speed Roe type scheme and its asymptotic analysis of low Mach number behaviour[J]. Journal of Computational Physics, 2008, 227(10): 5144-5159.

[9] Edwards J R. Towards unified CFD simulation of real fluid flows. AIAA-2001-2524, 2001.

[10] Edwards J R, Liou M S. Low diffusion flux-splitting schemes for flows at all speeds[J]. AIAA Journal, 1998.36(9): 1610-1617.

[11] Bauer F, Garabedian P, Korn D. Supercritical wine section. Lecture Notes in Economics and Math Systems, New York: Springer-Verlag, Section 1. 1972: 66; Section 2. 1975: 108.

[12] Schmidt E. Computation of supercritical compressor and turbine cascade with a design method fortransonic flow[J]. Journal of Engineering for Power, 1980, 102(1): 68-74.

[13] Jameson A. Aerodynamic design via control theory. AGARD-CP-463, 1989.

[14] Jameson A. Optimum aerodynamic design using CFD and control theory[J]. AIAA-1995-1729, 1995.

[15] Jameson A, Reuther J. Control theory based airfoildesign using the Euler equations[J]. AIAA-1994-4272, 1994.

[16] Nadarajah S, Jameson A. A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization . AIAA-2000-0667, 2000.

[17] Jameson A, Alonso J J, Reuther J, et al. Aerodynamic shape optimization techniques based on control theory. AIAA-1998-2538, 1998.

[18] Reuther J, Jameson A. Aerodynamic shape optimization of wing and wing-body configurations using control theory. AIAA-1995-123, 1995.

[19] Reuther J, Jameson A, Alonso J J, et al. Constrained multipoint aerodynamic shape optimization using an adjoint formulation anparallel computers. AIAA-1997-103, 1997.

[20] 杨旭东,乔志德. 基于共轭方程法的跨音速机翼气动力优化设计[J]. 航空学报, 2003, 24(1): 1-5 Yang Xudong, Qiao Zhide. Optimum aerodynamic design of transonic wing based on adjoint equationsmethod[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(1): 1-5.(in Chinese)

[21] 杜磊,宁方飞. 基于控制理论的压气机叶型数值优化方法[J]. 航空动力学报,2009,24(3): 615-625. Du Lei, Ning Fangfei. Numerical optimization of compressor blade profile based on control theory[J]. Journal of Aerospace Power, 2009, 24(3): 615-625.(in Chinese)

[22] Asouti V G, Zymaris A S, Papadimitriou D I, et al. Continuous and discrete adjoint approaches for aerodynamic shape optimizationwith low Mach number preconditioning[J]. Internatinal Journal for Numerical Method in Fluids, 2008, 57(10): 1485-1504.

[23] Venkateswaran S, Li D, Merkle C L. Influence of stagnation regions on preconditioned solutions at low speeds. AIAA-2003-435, 2003.

[24] Sheng C, Wang X. Characteristic variableboundary conditions for arbitrary Mach number algorithm in rotating frame. AIAA-2003-3976, 2003.

[25] van Leer. Towards the ultimate conservative difference scheme V. second-order sequel to Godunov’s method[J].Journal of Computational Physics, 1979, 32(1): 101-136.

[26] Rizzi M. Runge-Kutta finite volume simulationof laminar transonic flow over NACA0012 airfoil using the Navier-Stokes equations. FFA TN, 1986-60, 1986.

[27] Yoon S, Jameson A. Lower upper symmetric Gauss-Sei-del method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1998, 26(9): 1025-1026.

[28] Xie L. Gradient-based optimum aerodynamic designusing adjoint methods. Virginia: Virginia Polytechnic Institute, State University, 2002.

[29] Hicks R M, Henne P A. Wing design by numerical optimization. AIAA-1977-1247, 1977.

[30] Broyden C G. The convergence of a class of doublerank minimization algorithms[J]. IMA Journal of Applied Mathematics,1970, 6(3): 76-90.
文章导航

/