流体力学与飞行力学

基于非线性模型的大气层内拦截弹微分对策制导律

展开
  • 哈尔滨工业大学 航天学院, 黑龙江 哈尔滨 150001
刘延芳(1986- ) 男, 博士研究生。 主要研究方向: 拦截弹末制导与控制。 Tel: 0451-86418119 E-mail: lyf04025121@126.com 齐乃明(1962- ) 男, 博士, 教授, 博士生导师。 主要研究方向: 飞行器机电一体化。 Tel: 0451-86418119 E-mail: qinmok@163.com

收稿日期: 2010-10-27

  修回日期: 2010-12-06

  网络出版日期: 2011-07-23

基金资助

省部级项目

Differential Game Guidance Law for Endoatmospheric Interceptor Missiles Based on Nonlinear Model

Expand
  • School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

Received date: 2010-10-27

  Revised date: 2010-12-06

  Online published: 2011-07-23

摘要

针对新型战术弹道导弹(TBM)和智能巡航导弹等具有高机动性的拦截目标,应用控制受限的非线性对策模型,提出非线性微分对策制导律,并分析了零脱靶量拦截所容许的初始航向误差。目标和拦截弹间的相对运动是非线性的,采用传统线性化模型建立的拦截制导律会因为线性化而带来误差。提出的制导律是在保持拦截弹和目标的非线性运动学关系的基础上,把拦截弹航向误差作为性能指标,基于反馈线性化的思想,应用最优控制理论建立的。应用该制导律研究了在迎击拦截、追击拦截和阻击拦截3种拦截方式下实现零脱靶量拦截的容许初始航向误差,分析结果表明减小相对运动速度、提高拦截弹的机动加速度可以增加容许的初始航向误差。同时,当拦截弹具有速度优势时,目标的初始前置角接近90°或采用追击拦截可以允许较大的初始航向误差。

本文引用格式

刘延芳, 齐乃明, 夏齐, 阳勇 . 基于非线性模型的大气层内拦截弹微分对策制导律[J]. 航空学报, 2011 , 32(7) : 1171 -1179 . DOI: CNKI:11-1929/V.20110106.1118.001

Abstract

This paper develops a guidance law for the interceptors against highly maneuverable targets, such as tactical ballistic missiles (TBM) and cruise missiles with intelligent control systems, by using a nonlinear differential game formulation with bounded controls. It also analyzes the admissible initial flight-path errors of perfect intercept. Since the kinematics of the relative motion between the target and the interceptor is actually nonlinear, guidance laws traditionally based on linearization cause errors in the interception. In this paper, the guidance law is proposed by using nonlinear kinematics, taking the flight-path error of the intercept missile as the performance function and utilizing the feedback linearization and optimal control theory. The admissible initial flight-path errors of perfect intercept are studied in three intercept cases: head-on intercept, tail-chase intercept, and head-pursuit intercept. The results show that a smaller closing velocity and a greater maneuver acceleration of the intercept missile lead to a bigger admissible initial flight-path error. If the intercept missile possesses the advantage of velocity, a bigger admissible initial flight-path error can also be tolerated when the lead-angle of the target approximates 90°, or when the tail-chase mode of intercept is adopted.

参考文献

[1] 侯明善. 空-空导弹微分对策最佳导引律的研究[J]. 航空学报, 1987, 8(11): 579-586. Hou Mingshan. A study of differential game optimal guidance laws for air-to-air missiles[J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(11): 579-586. (in Chinese)

[2] Shinar J, Shima T, Kebke A. On the validity of linearized analysis in the interception of reentry vehicles//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston, VA: AIAA, 1998: 1050-1060.

[3] Gutman S, Leitmann G. Optimal strategies in the neighbourhood of a collision course[J]. AIAA Journal, 1976, 14: 1210-1212.

[4] 蔡远利, 吕学富. 最优策略的导引特性分析[J]. 航空学报, 1990, 11(3): 132-139. Cai Yuanli, Lü Xuefu. The steering characteristic analysis of optimal strategy[J]. Acta Aeronautica et Astronautica Sinica, 1990, 11(3): 132-139. (in Chinese)

[5] Gutman S. On optimal guidance for homing missile[J]. Journal of Guidance, Control, and Dynamics, 1979(3): 296-300.

[6] Shinar J, Gutman S. Three-dimensional optimal pursuit and evasion with bounded control[J]. IEEE Transactions on Automatic Control, 1980(3): 492-496.

[7] Shinar J. Solution techniques for realistic pursuit-evasion game[M]//Advances in Control and Dynamic Systems. New York: Academic Press, 1981: 63-124.

[8] 陈学愚. 一种考虑一阶惯性环节的最优制导律[J]. 航空学报, 1982, 3(4): 84-92. Chen Xueyu. An optimal guidance law via first order inertial loop[J]. Acta Aeronautica et Astronautica Sinica, 1982, 3(4): 84-92. (in Chinese)

[9] Qi N M, Liu Y F, Sun X L. Differential game guidance law for interceptor missile with time-varying lateral acce-leration limits[J]. Transaction of the Japan Society for Aeronautical and Space Sciences (in press).

[10] Shima T. Shinar J. Time varying pursuit-evasion game models with bounded controls[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(3): 425-432.

[11] 李运迁, 齐乃明, 孙小雷, 等. 大气层内拦截弹微分对策制导律对策空间分布研究[J]. 航空学报, 2010, 31(8): 1600-1607. Li Yunqian, Qi Naiming, Sun Xiaolei, et al. Game space decomposition study of differential game guidance law for endoatmospheric interceptor missiles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1600-1607. (in Chinese)

[12] Li Y Q, Qi N M, Zhang W H, et al. Bounded differential game guidance law for interceptor missiles with aero-fins and reaction-jets[J]. Transaction of the Japan Society for Aeronautical and Space Sciences, 2011, 53(182): 275-282.

[13] 郭建国, 周军. 基于H控制的非线性末制导律设计[J]. 航空学报, 2009, 30(12): 2423-2427. Guo Jianguo, Zhou Jun. Design of H control based nonlinear terminal guidance law[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2423-2427. (in Chinese)

[14] 周锐,张鹏. 基于神经网络的鲁棒制导律设计[J]. 航空学报, 2002, 23(3): 262-264. Zhou Rui, Zhang Peng. Robust guidance law design for homing missile using neural networks[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(3): 262-264. (in Chinese)

[15] Shima T, Golan O M. Head pursuit guidance[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1437-1444.

[16] Shima T. Deviated velocity pursuit//AIAA Guidance, Navigation, and Control Conference and Exhibit. Hilton Head, South Carolina: AIAA, 2007: 1537-1552.
文章导航

/