材料工程与机械制造

新型超高强度钢应力腐蚀断裂行为研究

展开
  • 北京航空航天大学 材料科学与工程学院, 北京 100191
刘建华(1957- ) 男,博士,教授,博士生导师。主要研究方向:材料与装备的腐蚀科学与表面防护先进技术。 Tel:010-82317103 E-mail:liujh@buaa.edu.cn

收稿日期: 2010-09-07

  修回日期: 2010-12-01

  网络出版日期: 2011-06-24

Stress Corrosion Crack of New Ultrahigh Strength Steel

Expand
  • School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2010-09-07

  Revised date: 2010-12-01

  Online published: 2011-06-24

摘要

采用恒载荷拉伸应力腐蚀实验研究了23Co14Ni12Cr3及40CrNi2Si2MoVA两种超高强度钢在质量分数为3.5%的NaCl溶液中的应力腐蚀开裂行为,为两种超高强度钢在结构件中的安全使用提供数据依据。通过金相显微镜和扫描电镜(SEM)对两种超高强度钢的显微组织以及断口形貌进行了分析。恒载荷拉伸应力腐蚀实验结果表明,23Co14Ni12Cr3钢在相同应力水平下的断裂时间比40CrNi2Si2MoVA钢的断裂时间长,这说明23Co14Ni12Cr3钢的抗应力腐蚀性能优于40CrNi2Si2MoVA钢。断口的形貌分析表明两种超高强度钢在应力和腐蚀介质的共同作用下发生断裂,断口显现出为沿晶断裂和韧窝断裂的形貌。

本文引用格式

刘建华, 田帅, 李松梅, 于美 . 新型超高强度钢应力腐蚀断裂行为研究[J]. 航空学报, 2011 , 32(6) : 1164 -1170 . DOI: CNKI:11-1929/V.20110107.1206.002

Abstract

The behavior of stress corrosion crack of two kinds of ultrahigh strength steel, 23Co14Ni12Cr3 and 40CrNi2Si2MoVA, in 3.5% NaCl solution are investigated with the constant load tensile stress corrosion method. The microstructure and fracture surface of the two ultrahigh strength steels are analyzed by metalloscopy and scanning electron microscopy (SEM). The results of constant load tensile stress corrosion test show that at the same stress level the fracture time of steel 23Co14Ni12Cr3 is longer than that of 40CrNi2Si2MoVA, which means 23Co14Ni12Cr3 possesses better corrosion resistance. The fracture morphology analysis shows that the fracture surface of the two ultrahigh strength steels has the characteristic of intergranular fracture and dimple fracture under the joint action of stress and corrosive solution.

参考文献

[1] 李成功, 傅恒志, 于翘, 等. 航空航天材料[M]. 北京: 国防工业出版社, 2002. Li Chenggong, Fu Hengzhi, Yu Qiao, et al. Aerospace materials [M]. Beijing: National Defense Industry Press, 2002. (in Chinese)

[2] 柳木桐, 刘建华, 钟平. 超高强度钢耐腐蚀性能研究进展[J]. 科技导报, 2010, 28(9): 112-115. Liu Mutong, Liu Jianhua, Zhong Ping. Research development of corrosion resistance of ultra-high strength steel[J]. Science & Technology, 2010, 28(9): 112-115. (in Chinese)

[3] 张滨岩. 化学成分对AerMet100钢组织和性能的影响. 昆明: 昆明理工大学机电工程学院, 2008. Zhang Binyan.The influence of chemical composition to the microstructure and performance of AerMet 100 steel. Kunming: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, 2008.(in Chinese)

[4] Wang L D, Jiang L Z, Zhu M, et al. Improvement of toughness of ultrahigh strength steel AerMet 100[J]. Journal of Materials Science & Technology, 2005, 21(5): 710-714.

[5] 钟平. A-100超高强度钢的组织与性能//2001年中国钢铁年会论文集. 2001: 825-828. Zhong Ping. Microstructure and mechanical properties in A-100 ultrahigh strength steel //CSM 2001 Annual Meeting. 2001: 825-828. (in Chinese)

[6] 赵振业. 超高强度钢中二次硬化现象研究[J]. 航空材料学报, 2002, 22(4): 46-55. Zhao Zhenye. Studing status on the secondary hardening phenomenon in ultra-high strength steels[J]. Journal of Aeronautical Materials, 2002, 22(4): 46-55. (in Chinese)

[7] 张淑玉, 王春旭, 史庆南. 跳过深冷处理对A100钢断裂韧性的影响[J]. 特钢技术, 2006, 12(4): 8-10. Zhang Shuyu, Wang Chunxu, Shi Qingnan. Effect of DF-skipped treatment on fracture toughness of A100 alloy[J]. Special Steel Technology, 2006, 12(4): 8-10. (in Chinese)

[8] 李志, 赵振业. AerMet100钢的研究与发展[J]. 航空材料学报, 2006, 26(3): 265-270. Li Zhi, Zhao Zhenye. Research and development of AerMet100 steel[J]. Journal of Aeronautical Materials, 2006, 26(3): 265-270. (in Chinese)

[9] 李杰, 古立新, 李志, 等. AerMet100钢力学性能的回火温度敏感性研究[J]. 金属热处理, 2010, 35(3): 33-36. Li Jie, Gu Lixin, Li Zhi, et al. Tempering temperature sensitivity of mechanical properties for AerMet100 steel [J]. Heat Treatment of Metals, 2010, 35(3): 33-36. (in Chinese)

[10] Novotny P M. An aging study of carpenter AerMet 100 alloy//Proceedings of Gilbert Speich Symposium on the Fundamentals of Aging and Tempering in Bainitic and Martensitic Steel Products. 1992: 237-247.

[11] Yang H R, Lee K B, Kwon H. Effects of Ni additions and austenitizing temperature on secondary harding behavior in high Co-Ni steels[J]. Metallurgical and Materials Transactions A, 2001, 32(9): 2393-2396.

[12] Speich G S. Innovation in ultrahigh-strength steel technology//Proceedings of the 34th Sagamore Army Material Research Conference. 1990.

[13] 刘建华, 尚海波, 陶斌武, 等. 0Cr18Ni5和AF1410高强度钢的腐蚀行为研究[J]. 材料工程, 2004(8): 29-31. Liu Jianhua, Shang Haibo, Tao Binwu, et al. Corrosion behavior of high strength steels 0Cr18Ni5 and AF1410 [J]. Journals of Materials Engineering, 2004(8): 29-31. (in Chinese)

[14] 郝雪龙, 刘建华, 李松梅, 等. 中性盐雾预腐蚀对AF1410高强度钢疲劳寿命的影响[J]. 航空材料学报, 2010, 30(1): 67-71. Hao Xuelong, Liu Jianhua, Li Songmei, et al. Effect of neutral salt spray precorrosion on fatigue life of AF1410 steel[J]. Journal of Aeronautical Materials, 2010, 30(1): 67-71. (in Chinese)

[15] 金相图谱编写组. 金相图谱[M]. 北京: 电力工业出版社, 1980. Compling Group of Metallographic Map. Metallographic map[M]. Beijing: Electric Power Industry Press, 1980. (in Chinese)

[16] 濮汝厚, 张伟, 赵振业. 超高强度钢300M含碳量、等温组织与力学行为的关系[J]. 航空材料学报, 1994, 14(3): 14-18. Pu Ruhou, Zhang Wei, Zhao Zhenye. The relationship between mechanical behavior and carbon content, isothermally transformed microstructure of 300M ultra-high strength steel[J]. Journal of Aeronautical Materials, 1994, 14(3): 14-18. (in Chinese)
文章导航

/