材料工程与机械制造

新型Co基合金Co-9Al-(9-x)W-xMo-2Ta-0.02B的显微组织与高低温力学性能

展开
  • 北京航空航天大学 材料科学与工程学院, 北京 100191
李浩(1987- ) 男,硕士研究生。主要研究方向:Co基高温结构材料。 Tel: 010-82315989 E-mail: lihaoliu2010@gmail.com 沙江波(1965- ) 男,博士,教授,博士生导师。主要研究方向:金属基超高温结构材料,材料力学行为。 Tel: 010-82315989 E-mail: jbsha@buaa.edu.cn李树索(1969- ) 男,博士,副教授。主要研究方向:Ni-Al系单晶高温合金,Nb-Si系金属间化合物材料,高性能镍基高温合金。 Tel: 010-82314488 E-mail: lishs@buaa.edu.cn

收稿日期: 2010-09-13

  修回日期: 2010-10-11

  网络出版日期: 2011-06-24

基金资助

新世纪优秀人才支持计划(NCET-06-0173)

Microstructures and Mechanical Properties of Alloys Co-9Al- (9-x)W-xMo-2Ta-0.02B at Room and High Temperatures

Expand
  • School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2010-09-13

  Revised date: 2010-10-11

  Online published: 2011-06-24

摘要

以新型Co基合金Co-9Al-9W-2Ta-0.02B成分为基础,分别添加了原子分数为2%、4%、6%、9%的Mo元素替代W(分别称2Mo、4Mo、6Mo、9Mo合金,W+Mo的原子分数为9%,无Mo添加的称为0Mo合金),研究了Mo元素对合金相组成、显微组织形貌、维氏硬度和高低温压缩强度的影响。结果表明铸态合金由Co的固溶体γ相和Co3(Al, Me)金属间化合物γ' 相组成(其中Me为合金元素W、Mo、Ta),γ相是基体,γ'相位于γ相界。1 350 ℃/8 h固溶+800 ℃/100 h时效处理后0Mo、2Mo和4Mo合金的γ相中均匀析出了与之共格的立方形γ'相Co3(Al, Me),尺寸为200~300 nm,原铸态的γ'相消失;6Mo和9Mo合金的组织与0Mo、2Mo和4Mo合金完全不同,γ相基体析出大量针状TCP相,原γ相晶界处的γ' 相中的W和/或Ta扩散离开而变成了Co3(Al, Mo)相,但基本保持铸态特征。各合金均出现反常屈服现象,随着Mo原子分数的提高,热处理合金室温和高温强度均有所降低,且反常屈服温度向低温方向移动。

本文引用格式

李浩, 沙江波, 李树索 . 新型Co基合金Co-9Al-(9-x)W-xMo-2Ta-0.02B的显微组织与高低温力学性能[J]. 航空学报, 2011 , 32(6) : 1139 -1146 . DOI: CNKI:11-1929/V.20101213.1758.014

Abstract

Based on the composition of Co-9Al-9W-2Ta-0.02B, 2at%, 4at%, 6at% and 9at% Mo are added to replace W (hereafter referred to as alloys 2Mo,4Mo,6Mo and 9Mo respectively; Mo-free alloy is referred to as alloy 0Mo). The effect of Mo additions on phase constitution, microstructure, HV hardness and room/high-temperature strength is investigated. It is found that the as-cast alloys show a microstructure composed of Co-base solid solution γ phase and intermetallic Co3(Al, Me) compound γ' phase (where Me stands for W, Mo and Ta). The γ phase is the matrix and the γ' phase is distributed on the grain boundaries of the γ phase. After 1 350 ℃/8 h solution and 800 ℃/100 h aging, a cubic γ' phase with a size of 200-300 nm homogeneously precipitates in the γ matrix for alloys 0Mo, 2Mo and 4Mo, and the as-cast γ' phase disappears. As for alloys 6Mo and 9Mo, the microstructure is significantly changed; however, no cubic γ' precipitates are found in the γ matrix; instead there is a large number of needle-like TCP precipitates, while the as-cast γ' phase Co3(Al, Me) compound changes to Co3(Al, Mo) compound. Abnormal yield characteristic is found for all alloys. As the Mo content increases, the room/high-temperature strength of the heat-treated alloys decreases, and the abnormal yield temperature shifts towards lower temperatures.

参考文献

[1] Sullivan C P, Donachie M J, Morral F R. Cobalt-base superalloys[M]. Brussels: Centre d'Information du Cobalt, 1970.

[2] Betteridge W, Heslop J. The nimonic alloys[M]. 2nd ed. London: Edward Arnold, 1974.

[3] Sims C T, Hagel W C. The superalloys[M]. New York: John Wiley & Sons, 1972.

[4] Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys[J]. Science, 2006, 312(5770): 90-91.

[5] Suzuki A, DeNolf G C, Pollock T M. Flow stress anomalies in γ/γ' two-phase Co-Al-W-base alloys[J]. Scripta Materialia, 2007, 56(5): 385-388.

[6] Chen M, Wang C Y. First-principles investigation of the site preference and alloying effect of Mo, Ta and platinum group metals in γ'-Co3(Al, W) [J]. Scripta Materialia, 2009, 60(8): 659-662.

[7] Jiang C. First-principles study of Co3(Al, W) alloys using special quasi-random structures[J]. Scripta Materialia, 2008, 59(10): 1075-1078.

[8] Oshima M, Tanaka K, Okamoto N L, et al. Effects of quaternary alloying elements on the γ' solvus temperature of Co-Al-W based alloys with fcc/L12 two-phase microstructures[J]. Journal of Alloys and Compounds, 2010, 508(1): 71-78.

[9] Suzuki A, Pollock T M. High-temperature strength and deformation of γ/γ' two-phase Co-Al-W-base alloys[J]. Acta Materialia, 2008, 56(6): 1288-1297.

[10] Shinagawa K, Omori T, Oikawa K, et al. Ductility enhancement by boron addition in Co-Al-W high-temperature alloys[J]. Scripta Materialia, 2009, 61(6): 612-615.

[11] 李相辉, 甘斌, 冯强, 等. Co-Al-W三元合金热处理组织[J]. 北京科技大学学报, 2008, 30(12): 1369-1373. Li Xianghui, Gan Bin, Feng Qiang, et al. Heat-treated microstructure of Co-Al-W ternary alloys[J]. Journal of University of Science and Technology Bejing, 2008, 30(12): 1369-1373. (in Chinese)

[12] 张永刚, 韩雅芳, 陈国良, 等. 金属间化合物结构材料[M]. 北京: 国防工业出版社, 2001: 561-565. Zhang Yonggang, Han Yafang, Chen Guoliang, et al. Intermetallic structural materials[M]. Beijing: National Defense Industry Press, 2001: 561-565. (in Chinese)

[13] 周瑞发, 韩雅芳, 李树索. 高温结构材料[M]. 北京: 国防工业出版社, 2006: 165-168. Zhou Ruifa, Han Yafang, Li Shusuo. High temperature structural materials[M]. Beijing: National Defense Industry Press, 2006: 165-168. (in Chinese)

[14] Yamaguchi M, Umakoshi Y. The deformation behavior of intermetallics superlattice compounds[J]. Progress Material Science, 1990, 34(1): 1-148.

[15] Takeuchi S, Kuramoto E. Temperature and orientation dependence of the yield stress in Ni3Ge single crystals[J]. Acta Materialia, 1973, 21(4): 415-425.
文章导航

/