电子与自动控制

基于双视线测量的相对导航方法

展开
  • 北京航空航天大学 宇航学院, 北京 100191
王楷(1984- ) 男,博士研究生。主要研究方向:相对轨道动力学与制导律研究。 Tel: 010-82339750 E-mail: wkwk20047@163.com 陈统(1980- ) 男,博士,讲师。主要研究方向:航天器轨道动力学与控制、航天器自主导航。 Tel: 010-82339750 E-mail: chet@buaa.edu.cn 徐世杰(1951- ) 男,博士,教授,博士生导师。主要研究方向:空间飞行器姿态动力学与控制,鲁棒控制和非线性控制研究。 Tel: 010-82339275 E-mail: starsjxu@yahoo.com.cn

收稿日期: 2010-09-16

  修回日期: 2010-10-25

  网络出版日期: 2011-06-24

基金资助

国家自然科学基金(10802002)

A Method of Double Line-of-sight Measurement Relative Navigation

Expand
  • School of Astronautics, Beihang University, Beijing 100191, China

Received date: 2010-09-16

  Revised date: 2010-10-25

  Online published: 2011-06-24

摘要

对非合作目标自主交会中的中远程相对导航问题进行研究。首先,给出二阶近似的航天器相对轨道动力学方程,并对视线(LOS)导航方法的可观测性进行了分析。然后,提出基于双视线测量的相对导航方案。该导航方案中,系统过程噪声模型采用适用于航天器远距离相对运动的轨道动力学方程;量测量包括目标对两个追踪航天器的视线角和追踪航天器之间的基线方位与长度,并以此建立了量测方程。最后,采用扩展卡尔曼滤波(EKF)算法解算目标的相对位置和速度。通过数值仿真验证了该导航方案的有效性,并分析了各航天器间几何参数的变化特点。

本文引用格式

王楷, 陈统, 徐世杰 . 基于双视线测量的相对导航方法[J]. 航空学报, 2011 , 32(6) : 1084 -1091 . DOI: CNKI:11-1929/V.20101213.1757.006

Abstract

Relative navigation for long or medium range autonomous rendezvous with a noncooperative target is discussed. Second-order approximation of the relative dynamics equations between the two spacecraft is presented. Observability of the line-of-sight (LOS) navigation is analyzed, and a double LOS measurement relative navigation strategy is proposed. A processing noise model of the relative navigation system is developed based on the relative dynamics equations between spacecraft within long distances. A measurement model is established, which includes the LOS angles of the target relative to the two spacecraft and both the azimuth and the length of the measurement baseline. An extended Kalman filter (EKF) algorithm is used to estimate the relative position and velocity of the target. The simulation results demonstrate the validity of the navigation method and are used to analyze variation characteristics of the geometric parameters among the spacecraft.

参考文献

[1] Polites M E. An assessment of the technology of automated rendezvous and capture in space. NASA TP1998-208528, 1998.

[2] 林来兴. 四十年空间交会对接技术的发展[J]. 航天器工程, 2007, 16(4): 70-77. Lin Laixing. Development of space rendezvous and docking technology in past 40 years[J]. Spacecraft Engineering, 2007, 16(4): 70-77. (in Chinese)

[3] 林来兴. 自主空间交会与对接敏感器技术[J]. 载人航天, 2005(5): 23-28. Lin Laixing. Autonomous rendezvous and docking sensor technology[J]. Manned Spaceflight, 2005(5): 23-28. (in Chinese)

[4] Woffinden D C. Angles-only navigation for autonomous orbital rendezvous. Utah: Utah State University, 2008.

[5] 史小平, 王子才, 柯其红. 空间拦截红外末制导中拦截器与目标相对距离的估计[J]. 航空学报, 1995, 16(3): 291-298. Shi Xiaoping, Wang Zicai, Ke Qihong. Estimation of the range between the intercepter and the target during infrared terminal guidance of space interception[J]. Acta Aeronautica et Astronautica Sinica, 1995, 16(3): 291-298. (in Chinese)

[6] 李爽. 着陆小行星的视线测量自主光学相对导航算法及其可观性分析[J]. 航空学报, 2009, 30(9): 1711-1717. Li Shuang. Line-of-sight measurement based autonomous optical relative navigation algorithms for asteroid landing and observability analysis[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9): 1711-1717. (in Chinese)

[7] Chari R J V. Autonomous orbital rendezvous using angle-only navigation. Massachusetts: Massachusetts Institute of Technology, 2001.

[8] Fogel E, Gavish M. Nth-order dynamics target observability from angle measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(3): 305-308.

[9] Song T L. Observability of target tracking with bearings-only measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1468-1472.

[10] Woffinden D C, Geller D K. Relative angles-only navigation and pose estimation for autonomous orbital rendezvous[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1455-1469.

[11] 刘涛, 谢永春. 非合作目标交会相对导航方法研究[J]. 航天控制, 2006, 24(2): 48-53. Liu Tao, Xie Yongchun. A study on relative navigation for spacecraft rendezvous with a noncooperative target[J]. Aerospace Control, 2006, 24(2): 48-53. (in Chinese)

[12] Chen T, Xu S J. Double line-of-sight mearsuring relative navigation for spacecraft autonomous rendezvous[J]. Acta Astronautica, 2010, 67(1/2): 122-134.

[13] 陈统. 空间自主交会的轨道动力学与控制方法研究. 北京: 北京航空航天大学宇航学院, 2007: 16-17. Chen Tong. A study on orbital dynamics and control of space autonomous rendezvous. Beijing: School of Astronautics, Beihang University, 2007: 16-17. (in Chinese)

[14] 秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理[M]. 西安: 西北工业大学出版社, 1998: 34-35. Qin Yongyuan, Zhang Hongyue, Wang Shuhua. Kalman filter and integrated navigation theory[M]. Xi’an: Northwestern Polytechnical University Press, 1998: 34-35. (in Chinese)

[15] 王亮, 张乃通, 刘晓峰. 低轨卫星通信网络星间链路几何参数动态特性[J]. 哈尔滨工业大学学报, 2003, 35(2): 184-187. Wang Liang, Zhang Naitong, Liu Xiaofeng. Dynamic characters of inter-satellite links in LEO networks[J]. Journal of Harbin Institute of Technology, 2003, 35(2): 184-187. (in Chinese)
文章导航

/