固体力学与飞行器总体设计

随机-有界混合不确定性下结构可靠性优化设计

展开
  • 西北工业大学 力学与土木建筑学院, 陕西 西安 710072
罗阳军(1979- ) 男,博士,副教授。主要研究方向:结构可靠性及优化设计。 Tel: 029-88431008 E-mail: yangjunluo@nwpu.edu.cn

收稿日期: 2010-09-29

  修回日期: 2010-12-20

  网络出版日期: 2011-06-24

基金资助

国家自然科学基金(51008248, 50878184);西北工业大学基础研究基金(JC200936);"111"计划(B07050)

Reliability-based Optimization Design for Structures with Stochastic and Bounded Parameter Uncertainties

Expand
  • School of Mechanics, Civil Engineering & Architecture, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2010-09-29

  Revised date: 2010-12-20

  Online published: 2011-06-24

摘要

在结构可靠性分析和设计中,往往无法将所有不确定性参数均作为概率随机变量,存在部分不确定性分布特征不明确而仅知其扰动界限的情况。基于概率模型与多椭球模型的混合不确定性描述,以标准U空间中扩展定义的混合可靠性指标为约束条件,建立了随机不确定性和有界不确定性并存情况下的结构可靠性优化数学模型。利用功能测度方法对原优化模型进行等效转换后,结合序列近似规划方法,将嵌套优化问题简化为一系列确定性优化问题求解,提高了计算效率。通过数学优化问题及某导弹翼面结构设计算例对所提模型的合理性及算法的有效性进行了验证。

本文引用格式

罗阳军, 高宗战, 岳珠峰, 吴子燕 . 随机-有界混合不确定性下结构可靠性优化设计[J]. 航空学报, 2011 , 32(6) : 1058 -1066 . DOI: CNKI:11-1929/V.20110310.1709.001

Abstract

In the reliability analysis and design of structures, it is unreasonable to describe all the uncertain parameters as stochastic variables when the probabilistic distribution characteristic for some of them is unavailable and only their variation bounds are known. Based on the probabilistic model description and the multi-ellipsoid model description for different types of uncertainties, a reliability-based optimization model of structures combining stochastic and bounded uncertainties is mathematically formulated with constraints on mixed reliability indices defined in standard U-space. The performance measure approach is employed to transform the original model into its equivalent form for improving the convergence and the stability. Then the reformulated nested optimization problem is simplified into a series of deterministic ones by using the sequential approximate programming approach, which greatly facilitates the efficient solution. Two examples, a mathematic optimization problem and a design of missile wing structure, are given to illustrate the validity of the proposed model as well as the efficiency of the presented numerical techniques.

参考文献

[1] Valdebenito M A, Schuller G I. A survey on approaches for reliability-based optimization[J]. Structural and Multi-disciplinary Optimization, 2010, 42(5): 645-663.

[2] Melchers R E. Structural reliability analysis and prediction[M]. 2nd ed. Chichester: Wiley, 1999.

[3] Elishakoff I. Essay on uncertainties in elastic and viscoelastic structures: from A.M. Freudenthal’s criticisms to modern convex modeling[J]. Computers and Structures, 1995, 56(6): 871-895.

[4] Sexsmith R G. Probability-based safety analysis—value and drawbacks[J]. Structural Safety, 1999, 21(4): 303-310.

[5] Moens D, Vandepitte D. Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis[J]. Archives of Computational Methods in Engineering, 2006, 13(3): 389-464.

[6] Mller B, Beer M. Engineering computation under uncertainty—capabilities of non-traditional models[J]. Computers and Structures, 2008, 86(10): 1024-1041.

[7] Ben-Haim Y, Elishakoff I. Convex models of uncertainty in applied mechanics[M]. Amsterdam: Elsevier, 1990.

[8] Jiang C, Han X, Liu G R. Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(49-52): 4791-4800.

[9] 亢战, 罗阳军. 基于凸模型的结构非概率可靠性优化[J]. 力学学报, 2006, 38(6): 807-815. Kang Zhan, Luo Yangjun. On structural optimization for non-probabilistic reliability based on convex models[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 807-815. (in Chinese)

[10] Elishakoff I, Colombi P. Combination of probabilistic and convex models of uncertainty when scarce knowledge is present on acoustic excitation parameters[J]. Computer Methods in Applied Mechanics and Engineering, 1993, 104(2): 187-209.

[11] Oberkampf W L, Helton J C, Joslyn C A, et al. Challenge problems: uncertainty in system response given uncertain parameters[J]. Reliability Engineering and System Safety, 2004, 85(1-3): 11-19.

[12] Penmetsa R C, Grandhi R V. Efficient estimation of structural reliability for problems with uncertain intervals[J]. Computers and Structures, 2002, 80(12): 1103-1112.

[13] Karanki D R, Kushwaha H S, Verma A K, et al. Uncertainty analysis based on probability bounds (p-box) approach in probabilistic safety assessment[J]. Risk Analysis, 2009, 29(5): 662-675.

[14] Qiu Z, Wang J. The interval estimation of reliability for probabilistic and non-probabilistic hybrid structural system[J]. Engineering Failure Analysis, 2010, 17(5): 1142-1154.

[15] Gao W, Song C, Tin-Loi F. Probabilistic interval analysis for structures with uncertainty[J]. Structural Safety, 2010, 32(3): 191-199.

[16] 郭书祥, 吕震宙. 结构可靠性分析的概率和非概率混合模型[J]. 机械强度, 2002, 24(4): 524-526. Guo Shuxiang, Lu Zhenzhou. Hybrid probabilistic and non-probabilistic model of structural reliability[J]. Journal of Mechanical Strength, 2002, 24(4): 524-526. (in Chinese)

[17] Du X, Sudjianto A, President S V, et al. Reliability-based design with the mixture of random and interval variables[J]. Journal of Mechanical Design, 2005, 127(6): 1068-1076.

[18] 程远胜, 钟玉湘, 游建军. 概率及非概率不确定性条件下结构鲁棒设计方法[J]. 工程力学, 2005, 22(4): 10-14. Cheng Yuansheng, Zhong Yuxiang, You Jianjun. Structural robust design subject to probabilistic and non-probabilistic uncertainties[J]. Engineering Mechanics, 2005, 22(4): 10-14. (in Chinese)

[19] Tu J, Choi K K, Park Y H. A new study on reliability-based design optimization[J]. Journal of Mechanical Design, 1999, 121(4): 557-564.

[20] Rackwitz R, Fiessler B. Structural reliability under combined random load sequences[J]. Computers and Structures, 1978, 9(5): 489-494.

[21] Rosenblatt M. Remarks on a multivariate transformation[J]. Annals of Mathematical Statistics, 1952, 23(3): 470-472.

[22] Luo Y, Kang Z, Li A. Structural reliability assessment based on probability and convex set mixed model[J]. Computers and Structures, 2009, 87(21-22): 1408-1415.

[23] Lee J O, Yang Y S, Ruy W S. A comparative study on reliability-index and target-performance-based probabilistic structural design optimization[J]. Computers and Structures, 2002, 80(3): 257-269.

[24] Liang J, Mourelatos Z P, Tu J. A single-loop method for reliability-based design optimization[J]. International Journal of Product Development, 2008, 5(1): 76-92.

[25] Cheng G, Xu L, Jiang L. A sequential approximate programming strategy for reliability-based structural optimization[J]. Computers and Structures, 2006, 84(21): 1353-1367.

[26] Du X, Chen W. Sequential optimization and reliability assessment method for efficient probabilistic design[J]. Journal of Mechanical Design, 2004, 126(2): 225-233.

[27] Neumaier A, Pownuk A. Linear systems with large uncertainties, with applications to truss structures[J]. Reliable Computing, 2007, 13(2): 149-172.

[28] Lawrence C, Zhou J L, Tits A L. User’s guide for CFSQP version 2.5. . http://www.aemdesign.com.
文章导航

/