固体力学与飞行器总体设计

一种基于约束因子的超载迟滞模型

展开
  • 南京航空航天大学 高新技术研究院, 江苏 南京 210016
张国勇(1982- ) 男, 博士研究生。 主要研究方向: 飞机结构损伤监测。 Tel: 025-84895827 E-mail: zhanggy@nuaa.edu.cn 顾绍景(1986- ) 男, 硕士研究生。主要研究方向: 结构完整性评定。 E-mail: gushaojing888@163.com 郭万林(1960- ) 男, 博士, "长江学者" 特聘教授, 博士生导师。 主要研究方向:纳机电和纳智能系统、 全寿命安全保障、 微智能测控及其在空天飞行器中的应用。 Tel: 025-84895827 E-mail: wlguo@nuaa.edu.cn 于培师(1982- ) 男, 博士研究生。 主要研究方向: 断裂、 疲劳、 损伤与寿命评估。 E-mail: psyu@nuaa.edu.cn

收稿日期: 2010-09-28

  修回日期: 2010-11-02

  网络出版日期: 2011-06-24

基金资助

国家自然科学基金(50805079); 航空科学基金(2008ZF52062)

An Overload Retardation Model Based on Constraint Factors

Expand
  • Academy of Frontier Sciences, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2010-09-28

  Revised date: 2010-11-02

  Online published: 2011-06-24

摘要

在常幅载荷中加入一个超载会明显影响后续一段时间裂纹扩展的速率。要准确预测结构在变幅载荷谱下的疲劳裂纹扩展寿命,必须研究超载对裂纹扩展的影响。现有的变幅疲劳裂纹扩展模型大致可分为屈服区模型、经验的裂纹闭合模型和条带屈服模型。条带屈服模型预测较准确但需要数值迭代求解,计算量大,且程序复杂,不利于工程应用;屈服区模型比较简单,但当前大部分屈服区模型中的相应参数需要通过多组试验确定,缺乏明确的物理意义。本文把裂纹闭合和屈服区的概念相结合,并考虑三维约束影响,提出了一种基于约束因子的超载迟滞模型。在此模型中,裂尖的三维约束状态显著影响超载塑性区,从而显著影响裂纹的闭合和扩展速率。在常幅疲劳裂纹扩展速率已知的前提下,本文模型只需根据某一超载比下的迟滞试验来确定材料的超载迟滞参数,其他超载比的迟滞效应即可基于该参数进行预测。把该模型用于2024-T3、2024-T351和6061-T6等铝合金试件在单超载和多超载作用下疲劳裂纹扩展寿命的预测,预测结果和试验值的相对误差小于20%;在高超载比时,由于裂尖大范围屈服,预测误差相对较大,但仍小于34%。对2024-T351的验证结果还表明,本文模型能够有效预测超载迟滞的厚度效应。

本文引用格式

张国勇, 顾绍景, 郭万林, 于培师 . 一种基于约束因子的超载迟滞模型[J]. 航空学报, 2011 , 32(6) : 1032 -1039 . DOI: CNKI:11-1929/V.20101213.1758.016

Abstract

Application of a single overload to a constant amplitude loading will significantly affect subsequent crack propagation rate. Therefore, it is necessary to evaluate the influence of overloads on crack growth rates for the fatigue life prediction of structures subject to variable amplitude loadings. The existing fatigue crack growth models for structures subject to variable amplitude loadings can be classified into three categories: the plastic zone based models, the empirical crack closure models and the strip yield models. Of these, the strip yield models can make precise predictions for the overloading effect, but they are too complicated for engineering applications. The plastic zone based models are simple, but they generally include empirical parameters which often lack clear physical significance and have to be determined by a lot of experiments. By combining the advantages of the plastic zone based models and the strip yield models, the three-dimensional constraints near the crack tip are introduced and a new overload retardation model is developed. In this model, the plastic zone induced by the overload is affected by the three-dimensional constraints, and it leads to significant influence on the crack closure and growth rate. On condition that the crack growth rate at constant amplitude loading is obtained, the overload retardation factor of this model can be determined by a retardation test under any overload ratio. The retardation effects of other overload ratios can be predicted by the obtained factor. With the aid of the factor and the sound basis of exact prediction of the crack propagation under constant amplitude loading by the constraint theory, the developed model is proved to be efficient on aluminium alloys such as 2024-T3, 2024-T351, and 6061-T6. In most cases, its life prediction errors are within 20% compared with the results of the crack propagation tests with overloads. The errors are still less than 34% even in large-scale yielding situations. Moreover, from the verification of 2024-T351, the new model is shown to be effective for predicting the thickness effect on overloading retardation.

参考文献

[1] Fatemi A, Yang L. Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials[J]. International Journal of Fatigue, 1998, 20(1): 9-34.

[2] Harmain G. A model for predicting the retardation effect following a single overload[J]. Theoretical and Applied Fracture Mechanics, 2010, 53(1): 80-88.

[3] Elber W. Fatigue crack closure under cyclic tension[J]. Engineering Fracture Mechanics, 1970, 2(1): 37-44.

[4] Elber W. The significance of fatigue crack closure//American Society for Testing and Materials. Damage Tolerance in Aircraft Structures. Hampton: ASTM International, 1971: 230-242.

[5] Taheri F, Trask D, Pegg N. Experimental and analytical investigation of fatigue characteristics of 350WT steel under constant and variable amplitude loadings[J]. Marine Structures, 2003, 16(1): 69-91.

[6] Newman J C, Jr. A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading[J]. ASTM Special Technical Publication, 1981(748): 53-84.

[7] Guo W, Wang C, Rose F. The influence of cross-sectional thickness on fatigue crack growth[J]. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22(5): 437-444.

[8] 郭万林,张田忠. 飞机载荷谱下裂纹扩展的三维约束效应[J]. 航空学报, 2000, 21(4): 294-298. Guo Wanlin, Zhang Tianzhong. Effect of three-dimensional constraint on crack growth under aircraft spectrum loading[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(4): 294-298. (in Chinese)

[9] Chang T, Guo W. A model for the through-thickness fatigue crack closure[J]. Engineering Fracture Mechanics, 1999, 64(1): 59-65.

[10] Guo W. Three-dimensional analyses of plastic constraint factor for through-thickness cracked bodies[J]. Engineering Fracture Mechanics, 1999, 62(4-5): 383-407.

[11] Newman J C, Jr. A crack opening stress equation for fatigue crack growth[J]. International Journal of Fracture, 1984, 24(4): 131-135.

[12] 郭万林. 复杂环境下的三维疲劳断裂[J]. 航空学报, 2002, 23(3): 215-220. Guo Wanlin. Three-dimensional fatigue fracture in complex environments[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(3): 215-220. (in Chinese)

[13] Wu Y S, Schijve J. Fatigue crack closure measurements on 2024-T3 sheet specimens[J]. Fatigue & Fracture of Engineering Materials & Structures, 1995, 18(9): 917-921.

[14] Newman J C, Jr. Prediction of crack growth under variable-amplitude loading in thin-sheet 2024-T3 aluminum alloys. NASA 2004110410, 1997.

[15] McMaster F, Smith D. Predictions of fatigue crack growth in aluminium alloy 2024-T351 using constraint factors[J]. International Journal of Fatigue, 2001, 23(S1): S93-S101.

[16] 吴学仁. 飞机结构金属材料力学性能手册[M]. 北京:航空工业出版社, 1996: 185-203. Wu Xueren. Handbook of mechanical properties of aircraft structural metals[M]. Beijing: Aeronautic Industry Press, 1996: 185-203. (in Chinese)

[17] Kumar R. Prediction of delay cycles due to instant of single overload cycles[J]. Engineering Fracture Mechanics, 1992, 42(3): 563-571.

[18] Donald K, Paris P C. An evaluation of ΔKeff estimation procedures on 6061-T6 and 2024-T3 aluminum alloys[J]. International Journal of Fatigue, 1999, 21(S1): S47-S57.
文章导航

/