固体力学与飞行器总体设计

大展弦比机翼总体刚度的气动弹性优化设计

展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100191
刘东岳(1983- ) 男,博士研究生。主要研究方向:气动弹性设计与优化。 Tel: 010-82338723 E-mail: liudongyue@ase.buaa.edu.cn 万志强(1976- ) 男,博士,副教授,硕士生导师。主要研究方向:飞行器气动弹性设计与优化、结构动力学、微小型飞行器设计。 Tel: 010-82317510 E-mail: wzq@buaa.edu.cn 杨超(1966- ) 男,博士,教授,博士生导师。主要研究方向:气动弹性、飞行力学、飞行器设计等。 Tel: 010-82317510 E-mail: yangchao@buaa.edu.cn 唐长红(1959- ) 男,硕士,研究员,博士生导师。主要研究方向:飞行器设计、气动弹性、结构强度等。

收稿日期: 2010-09-29

  修回日期: 2010-11-16

  网络出版日期: 2011-06-24

基金资助

高等学校博士学科点专项科研基金(20091102110015)

Aeroelastic Optimization Design of Global Stiffness for High Aspect Ratio Wing

Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2010-09-29

  Revised date: 2010-11-16

  Online published: 2011-06-24

摘要

针对大展弦比机翼总体刚度设计问题,提出了梁架模型气动弹性优化和三维优化模型折算两种设计方法,并以大展弦比机翼为例对两种方法的合理性进行了验证。前者基于机翼梁架式模型,利用气动弹性优化方法对其主梁刚度进行设计,其特点是建模简单、计算效率较高,可以在设计信息较少的概念和初步设计阶段使用,但由于约束条件考虑较少,设计结果相对粗略。后者基于机翼三维模型,利用气动弹性优化方法获得优化模型,再利用工程梁理论对优化模型进行刚度折算,获得机翼总体刚度分布,其特点是综合考虑了强度约束、气动弹性约束甚至是工艺约束,设计刚度最接近实际临界情况,可在有一定结构设计信息的初步详细设计阶段使用,但所需结构信息量较大,对结构建模要求较高,计算耗费相对较大。研究表明,基于两种方法设计的刚度分布具有较好的一致性和工程实用性。此外,与传统的经验公式推算方法相比,基于气动弹性优化手段的两种设计方法设计的刚度更趋合理。

本文引用格式

刘东岳, 万志强, 杨超, 唐长红 . 大展弦比机翼总体刚度的气动弹性优化设计[J]. 航空学报, 2011 , 32(6) : 1025 -1031 . DOI: CNKI:11-1929/V.20110106.1117.000

Abstract

Two methods to design the global stiffness of a high aspect ratio wing are introduced, i.e., the beam-frame model aeroelastic optimization method, and the three-dimensional optimization model conversion method. Taking a high aspect ratio wing as an example, rationality of the two methods is proved. Based on the beam-frame model, the global stiffness of the model main beam is designed by the first method using aeroelastic optimization. Because of its modeling simplicity and calculating efficiency, this method can be applied to the concept and primary design stage, though the precision is not high enough on account of its insufficient consideration of constraints. Based on the three-dimensional model, the global stiffness of the wing is designed by the second method using aeroelastic optimization and engineering beam conversion. The design stiffness by this method is closer to the actual critical case which takes into consideration the strength constraints, aeroelastic constraints, and process constraints. This method can be used in the primary design stage when some structure data is obtained; however, it has lower efficiency due to its high requirement of structure data and structure modeling. Through calculating and comparing the results, the consistency and engineering practicability of the stiffness distribution by the two methods are verified. Compared with the conventional estimation method, the two aeroelastic optimization methods are more reasonable.

参考文献

[1] 牛春匀. 实用飞机结构工程设计[M]. 程小全, 郦正能, 译. 北京: 航空工业出版社, 2008: 39-42. Niu M C Y. Airframe structural design[M]. Cheng Xiaoquan, Li Zhengneng, translated. Beijing: Aviation Industry Press, 2008: 39-42. (in Chinese)

[2] 陈桂彬, 邹丛青, 杨超. 气动弹性设计基础[M]. 北京: 北京航空航天大学出版社, 2004: 8-12. Chen Guibin, Zou Congqing, Yang Chao. Aeroelastic design foundation[M]. Beijing: Beihang University Press, 2004: 8-12. (in Chinese)

[3] Bisplinghof R L, Ashley H, Halfman T L. Aeroelasticity[M]. New York: John Wiley and Sons, Inc., 1962: 1-17.

[4] Schuster D M. An inverse method for computation of structural stiffness distributions of aeroealstically optimized wings. AIAA-1993-1540, 1993.

[5] Hinson B L, Burdges K P. Acquisition and application of transonic wing and far-field data for three-dimensional computational method evaluation[J]. AFOSR-TR-80-0421, 1980.

[6] 孙晓红, 谭申刚, 谢怀强. 方案阶段颤振预估方法研究//第十一届全国空气弹性学术交流会. 2009. Sun Xiaohong, Tan Shengang, Xie Huaiqiang. Research of flutter speed estimation method in preliminary design stage//CARS11-2009. 2009. (in Chinese)

[7] Vasily V C, Fanil Z I, Mikhail C Z, et al. Optimization approach to design of aeroelastic dynamically-scaled models of aircraft. AIAA-2004-4642, 2004.

[8] Hodges D H, Pierce G A. Introduction to structural dynamics and aeroelasticity[M].Cambridge: Cambridge Univiversity Press, 2002: 23-28.

[9] Liu D Y, Wan Z Q, Yang C, et al. Primary modeling and analysis of wing based on aeroelastic optimization. AIAA-2010-2719, 2010.

[10] 龚尧南. 结构力学[M]. 北京: 北京航空航天大学出版社, 2001: 110-114. Gong Yaonan. Structural mechanics[M].Beijing: Beihang University Press, 2001: 110-114. (in Chinese)

[11] Design requirements for service aircraft[S]. Aviation Publication (AvP) 970, 1959.

[12] Shirk M H, Hertz T J. Aeroelastic tailoring—theory, practice, and promise[J]. Journal of Aircraft, 1986, 23(1): 6-18.

[13] Chen P C, Jha R, Sarhaddi D, et al. A variable stiffness spar (VSS) approach for aircraft maneuver enhancement using ASTROS. AIAA-1999-1471, 1999.

[14] Wan Z Q, Yang C, Zou C Q. Design studies of aeroelastic tailoring of forward-swept composite aircraft using hybrid genetic algorithm. AIAA-2003-1491, 2003.

[15] 万志强, 唐长红, 邹丛青. 柔性复合材料前掠翼飞机静气动弹性分析[J]. 复合材料学报, 2002, 19(5): 118-124. Wan Zhiqiang, Tang Changhong, Zou Congqing. Static aeroelastic characteristics analysis of a flexible forward swept composite aircraft[J]. Acta Materiae Compositae Sinica, 2002, 19(5): 118-124. (in Chinese)

[16] Guan J, Aral M M. Progressive genetic algorithm for solution of optimization problems with nonlinear equality and inequality constraints[J]. Applied Mathematical Modelling, 1999, 23(4): 329-343.

[17] Rodden W P, Johnson E H. MSC/Nastran aeroelastic analysis user’s guide: Ver. 68 [M]. Los Angeles: MSC. Software Corporation, 1994: 657-698.
文章导航

/