开展磁流体(MHD)动力技术实验研究,实验系统必须满足两项基本的条件:一是超声速或高超声速气流;二是气流必须是导电流体。基于此,介绍了基于激波风洞的超声速磁流体动力技术实验系统的基本组成、设计思想和调试情况。设计了马赫数Ma=2的超声速喷管及实验段;采用氦气驱动氩气,在平衡接触面运行方式下得到高温气体,通过在低压段注入电离种子K2CO3粉末,实现高温条件下导电流体的产生。得到了以下结论:通过合适的设计激波管高低压段长度,实验时间为9 ms左右;⑤区总温达到3 500 K以上,由于实验时间很短,采用有机玻璃加工的喷管及实验段不需要考虑冷却问题;Ma=2的超声速气流的电导率达到40 S/m,采用电磁铁的情况下,当低压段压力p1=3 kPa、长度L=0.2 m、磁场强度B=2.0 T时,磁作用数为0.174;采用永磁铁的情况下,当p1=1 kPa、L=1 m、B=0.5 T时,磁作用数为0.164。利用本实验系统可以开展磁流体流动控制、磁流体发电和磁流体加速等基础实验研究。
In order to perform magenetohydrodynamic (MHD) technical experiments, the experimental system needs to meet the following two conditions: one is supersonic or hypersonic flow; the other is that the flow must be conductivity. In this paper, basic composition, design methods, and debugging situation of a supersonic MHD technical experimental system based on shock tunnel are introduced. Mach number Ma=2 supersonic nozzle and testing section are designed; helium is used to drive argon gas, equilibrium contact surface operating mode is used for getting high temperature gas, and the conductive gas is obtained by adding ionization seed K2CO3 powder to the driven section. The following results are obtained: the effective testing time is about 9 ms by adjusting the length of driver section and driven section; the temperature in the 5th zone reaches over 3 500 K; due to short-time running, cooling problem of the nozzle and working section can be ignored; the conductivity of Ma=2 supersonic flow is 40 S/m, the magnetic interaction parameter Q is 0.174 under the conditions of p1=3 kPa, L=0.2 m and B=2.0 T realized by electromagnet, while Q is 0.164 when p1=1 kPa, L=1 m and B=0.5 T using permanent magnet. This experimental system could be used to perform preliminary experimental researches such as MHD flow control, MHD power generation and MHD acceleration.
[1] Chapman J, Schmidt H, Ruoff R, et al. Flight weight magnets for space application using carbon nanotubes. AIAA-2003-330, 2003.
[2] Chase R L, Boyd D R, Czysz D P, et al. An AJAX technology advanced SSTO design concept. AIAA-1998-5527, 1998.
[3] Gurijanov E P, Harsha P T. AJAX: new directions in hypersonic technology. AIAA-1996-4609, 1996.
[4] Kopchenov V, Vatazhin A, Gouskov O. Estimation of possibility of use of MHD control in scramjet. AIAA-1999-4971, 1999.
[5] Lapushkina T A, Poniaev S A, Vasil-eva R V, et al. Experiments on MHD control of attached shocks in diffuse. AIAA-2003-169, 2003.
[6] Bobashev S V, Mende N P, Sakharov V A, et al. MHD control of the separation phenomenon in a supersonic xenon plasma flow. AIAA-2003-168, 2003.
[7] Sheikin E G, Kuranov A L. Scramjet with MHD bypass under "AJAX" concept. AIAA-2004-1192, 2004.
[8] Ramon L C, Unmeel B M, David W B. Comments on MHD energy bypass engine powered spaceliner. AIAA-1999-4975, 1999.
[9] Lineberry J T, Begg L L, Castro J H, et al. HVEPS scramjet-driven MHD power demonstration test results. AIAA-2007-3880, 2007.
[10] Moeller T, Robert R, Lineberry J T, et al. HVEPS combustion driven MHD power demonstration tests. AIAA-2008-4097, 2008.
[11] Murakami T, Okuno Y. High-performance nonequilibrium-plasma magnetohydrodynamic electrical power generator using slightly divergent channel configuration: II. experimental [J]. Journal of Physics D: Applied Physics, 2008, 41(12): 125212-125224.
[12] Macheret S O, Shneider M N, Miles R B. Electron beam generated plasmas in hypersonic MHD channels[J]. AIAA Journal, 2001, 39(6): 1127-1138.
[13] Nishihara M, Rich J W, Lempert W R, et al. Low-temperature M=3 flow deceleration by lorentz force. AIAA-2006-1004, 2006.
[14] Bobashev S V, Erofeev A V, Lapushkina T A, et al. Air plasma produced by gas discharge in supersonic MHD channel. AIAA-2006-1373, 2006.
[15] Shibkov V M, Abramova A D, Chernikov A V, et al. Microwave discharges in supersonic plasma aerodynamics. AIAA-2004-513, 2004.
[16] Borghi C A, Carraro M R, Cristofolini A, et al. Magnetohydrodynamic interaction in the shock layer of a wedge in a hypersonic flow[J]. IEEE Transactions on Plasma Science, 2006, 34(5): 2450-2463.
[17] 吕浩宇. 高超声速乘波构型飞行器磁流体进气道一体化研究. 北京: 北京航空航天大学, 2008. Lu Haoyu, Conceptual study on integrated design of airframe/MHD bypass scramjet for a waverider- based hypersonic vehicle. Beijing: Beihang University, 2008.(in Chinese)
[18] 于达仁, 唐井峰, 鲍文. 用于高超声速推进的MHD-Arc-Ramjet联合循环[J]. 航空学报, 2007, 28(4): 769-775. Yu Daren, Tang Jingfeng, Bao Wen. MHD-arc-ramjet combined cycle for hypersonic propulsion [J]. Acta Aero- nautica et Astronautica Sinica, 2007, 28(4): 769-775.(in Chinese)
[19] Su C B, Li Y H, Chen B Q, et al. Experimental investigation of MHD flow control for the oblique shock wave around the ramp in low-temperature supersonic flow[J]. Chinese Journal of Aeronautics, 2010, 22(1): 22-32.
[20] 王健, 李应红, 程邦勤, 等. 等离子体气动激励控制激波的实验研究[J]. 航空学报, 2009, 30(8): 1374-1379. Wang Jian, Li Yinghong, Chen Bangqing, et al. Experimental investigation on shock wave control by plasma aerodynamic actuation[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8): 1374-1379.(in Chinese)
[21] 王健, 李应红, 程邦勤, 等. 等离子体气动激励控制激波的机理研究[J]. 物理学报, 2009, 58(8): 5513-5519. Wang Jian, Li Yinghong, Chen Bangqing, et al. Mechanism investigation on shock wave control by plasma aerodynamic actuation[J]. Acta Physica Sinica, 2009, 58(8): 5513-5519.(in Chinese)
[22] Wang J, Li Y H, Chen B Q, et al. Investigation on oblique shock wave control by arc discharge plasma in supersonic airflow[J]. Journal of Applied Physics, 2009, 106(7): 073307-073314.
[23] Wang J, Li Y H, Chen B Q, et al. Effects of plasma aerodynamic actuation on oblique shock wave in a cold supersonic flow[J]. Journal of Physics D: Applied Physics, 2009, 42(16): 165503-165511.
[24] McGilvray M, Jacobs P A, Morgan R G, et al. Helmholtz resonance of pitot pressure measurements in impulsive hypersonic test facilities. AIAA-2009-115, 2009.
[25] 居滋象, 吕友昌, 荆伯弘. 开环磁流体发电[M]. 北京: 北京工业大学出版社, 1998. Ju Cixiang. Lu Youchang, Jing Bohong. Open cycle MHD power generation[M]. Beijing: Beijing Industry University Press, 1998.(in Chinese)