流体力学与飞行力学

三体系统中引力拖车的偏置非开普勒轨道研究

展开
  • 1. 哈尔滨工业大学 航天学院, 黑龙江 哈尔滨 150080;
    2. 北京理工大学 宇航学院, 北京 100081
崔祜涛(1970- ) 男, 博士, 教授, 博士生导师。主要研究方向: 深空探测轨道设计与优化、行星探测总体设计与系统集成、深空探测器自主导航与控制。 Tel: 0451-86418030 E-mail: cht@astro.hit.edu.cn张振江(1981- ) 男, 博士研究生。主要研究方向: 深空探测轨道动力学与控制。 Tel: 0451-86418320-409 E-mail: river18202@gmail.com崔平远(1961- ) 男, 博士, 教授, 博士生导师。主要研究方向: 飞行器飞行动力学与控制、 智能信息处理与自主导航、 深空探测器自主技术与轨道设计。 Tel: 010-68948611 E-mail: cuipy@bit.edu.cn

收稿日期: 2010-10-13

  修回日期: 2010-11-12

  网络出版日期: 2011-06-24

基金资助

国家自然科学基金(10672044)

Research on Displaced Non-Keplerian Orbit of Gravitational Tractor in Three-body System

Expand
  • 1. School of Astronautics, Harbin Institute of Technology, Harbin 150080, China;
    2. School of Aerospace Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2010-10-13

  Revised date: 2010-11-12

  Online published: 2011-06-24

摘要

为了研究太阳-小行星-引力拖车三体系统中引力拖车的轨道运动问题,采用柱坐标系下的Hill方程描述了三体系统中引力拖车的运动情况,应用平均化方法消除周期项的影响,得到平均偏置非开普勒轨道的表达式,并研究了轨道稳定性与引力拖车最大有效拉力等问题。研究表明:三体系统中,在小行星飞行方向(或反方向)上存在偏置非开普勒轨道;与二体系统中的偏置轨道不同,三体系统中的一些偏置轨道是不稳定的,轨道稳定区域可以由偏置量和轨道半径描述;与悬停轨道相比,偏置轨道可以将引力拖车的推进效率提高一倍左右,从而获得更长的工作时间和更大的作用效果。

本文引用格式

崔祜涛, 张振江, 崔平远 . 三体系统中引力拖车的偏置非开普勒轨道研究[J]. 航空学报, 2011 , 32(6) : 997 -1006 . DOI: CNKI:11-1929/V.20101217.1207.000

Abstract

This paper presents a study of the displaced non-Keplerian orbit in (or opposite to) the direction of an asteroid flight in a three-body system including the sun, the asteroid and the spacecraft. The Hill equation in the cylindrical coordinates is derived and the periodic terms are removed by the averaging-procedure in the first place. Therefore, the formula of a displaced non-Keplerian orbit can be obtained, which indicates that there exists such an orbit in a three-body system. Then the stability condition of the displaced orbit is derived and the stable region is given, which is described by the orbital offset and the orbital radius. The relationship between the maximal pull and the orbital offset is studied and the optimal displaced orbit for asteroid Apophis' gravitational tractor is provided. Finally the hovering orbit and the displaced orbit of a gravitational tractor are analyzed and the motion law of an asteroid under the action of a gravitational tractor is given. Compared with the hovering orbit, a displaced orbit can approximately double the thrust efficiency, thereby acquiring much longer operating time and doing much more work.

参考文献

[1] 胡维多, Scheeres D J, 向开恒. 飞行器近小行星轨道动力学的特点及研究意义 [J]. 天文学进展, 2009, 27(6): 152-166. Hu Weiduo, Scheeres D J, Xiang Kaiheng. The characteristics of near asteroid orbital dynamics and its implication to mission analysis [J]. Progress in Astronomy, 2009, 27(6): 152-166. (in Chinese)

[2] Chapman C R, Morrison D. Impact on the earth by asteroids and comets: assessing the hazard [J]. Nature (London), 1994, 367(6458): 33-39.

[3] Rabinowitz D, Helin E, Lawrence K, et al. A reduced estimate of the number of kilometre-sized near-earth asteroids [J]. Nature (London), 2000, 403(6766): 165-166.

[4] Ralph K, Gerhard H, Ekkehard K. Optimal deflection of neos en route of collision with the earth [J]. Icarus, 2006,182(2): 482-488.

[5] Alvarez L W, Alvarez W, Asaro F, et al. Extraterrestrial cause for the cretaceous tertiary extinction [J]. Science, 1980, 208: 1095-1108.

[6] Ahrens T J, Harris A W. Deflection and fragmentation of near-earth asteroids [J]. Nature (London), 1992, 360(6403): 429-433.

[7] Vasilt M. Concepts for near earth asteroid deflection using spacecraft with advanced nuclear and solar electric propulsion systems [J]. Journal of the British Interplanetary Society, 2005, 58(7): 268-278.

[8] Scheeres D J, Schweickart R. The mechanics of moving asteroids . AIAA-2004-1446, 2004.

[9] Schweickart R, Chapman C, Durda D, et al. Threat mitigation: the asteroid tugboat . White Paper 041, Presented at NASA Workshop on NEO Detection, Characterization, and Threat Mitigation, 2006.

[10] Edward T L, Stanley G L. A gravitational tractor for towing asteroids [J]. Nature (London), 2005, 438(7065): 177-178.

[11] Colin R M. The existence and stability of families of displaced two-body orbits [J]. Celestial Mechanics and Dynamical Astronomy, 1997, 67(2): 167-180.

[12] Colin R M. Near earth object orbit modification using gravitational coupling [J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 870-873.

[13] McInnes C R. Dynamics, stability, and control of displaced non-keplerian orbits [J]. Journal of Guidance, Control, and Dynamics, 1998, 21(5): 799-805.

[14] John B, Colin R M. Dynamics and control of displaced periodic orbits using solar-sail propulsion [J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3): 27-537.

[15] 刘林. 航天器轨道理论 [M]. 北京, 国防工业出版社, 2000: 114-120. Liu Lin. Orbit theory of spacecraft [M]. Beijing: National Defense Industry Press, 2000: 114-120.( in Chinese)

[16] Bong W. Dynamics and control of gravity tractor spacecraft for asteroid de?ection //AIAA/AAS Astrodynamics Specialist Conference and Exhibit. 2008.

[17] Jinkins J, Singal P, Davis J. Impact keyholes and collision probability analysis for resonant encounter asteroids. White Paper 070, Presented at NASA Workshop on NEO Detection, Characterization, and Threat Mitigation, 2006.

[18] Kahle R, Hahn G, Kugrt E. Optimal deflection of NEOs in route of collision with the Earth [J]. Icarus, 2006, 182(2): 482-488.
文章导航

/