提出了一种基于滑模干扰观测器(SMDO)的滑模控制器(SMC)设计方法。针对一类级联多输入多输出(MIMO)非线性系统,根据奇异摄动原理将其分为内、外回路分别进行控制器设计。以外回路为例,分析了传统基于饱和函数的滑模控制的鲁棒性,针对其在面临干扰时鲁棒性较差的问题,在名义滑模控制律的基础上设计了基于超扭曲算法的SMDO以实现对干扰的估计和补偿。将该方法应用于导弹控制系统的设计中,通过仿真表明,基于SMDO的滑模控制器(SMDO-SMC)有效提高了控制系统的鲁棒性和性能。
A sliding mode controller (SMC) design approach based on the sliding mode disturbance observer (SMDO) is proposed. A class of cascade multiple-input multiple-output (MIMO) nonlinear system is separated into outer and inner loops based on the singular perturbation principle, and the controllers are designed in the two loops respectively. The robustness of the traditional saturation-function-based sliding mode controller is analyzed in the outer loop, and it is found to be weak in the presence of disturbances. To overcome this problem, together with the nominal sliding mode control law, SMDOs based on the super-twisting algorithm are designed to estimate and compensate for disturbances. Finally, the approach is applied to a missile control system design. The simulation results demonstrate that SMDO-based sliding mode controller (SMDO-SMC) effectively improves both the robustness and control performance of the control system.
[1] Young K D, Utikin V I, Özgüner V. A control engineer’s guide to sliding mode control[J]. IEEE Transactions on Control System Technology, 1999, 7(3): 328-342.
[2] Shtessel Y B, Shkolnikov I A, Brown M D J. An asymptotic second-order smooth sliding mode control[J]. Asian Journal of Control, 2003, 5(4): 498-503.
[3] Xu H J, Mirmirani M D, Ioiannou P A. Adaptive sliding mode control design for a hypersonic flight vehicle[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 829-838.
[4] Hess R A, Wells S R. Sliding mode control applied to reconfigurable flight control design[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(3): 452-462.
[5] 丁世宏, 李世华. 空间飞行器姿态的有限时间跟踪控制方法[J]. 航空学报, 2007, 28(3): 628-633. Ding Shihong, Li Shihua. Finite time tracking control of spacecraft attitude[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3): 628-633. (in Chinese)
[6] Shtessel Y B, Buffington J, Banda S. Multiple timescale flight control using reconfigurable sliding modes[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(6): 873-883.
[7] Huang J, Lin C F. Application of sliding mode control to bank-to-turn missile systems//Proceedings of 1st IEEE Regional Conference on Aerospace Control Systems. 1993: 569-573.
[8] Hall C E, Shtessel Y B. Sliding mode disturbance observer-based control for a reusable launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1315-1328.
[9] Slotine J J E, Coetsee J A. Adaptive controller synthesis for nonlinear systems[J]. International Journal of Control, 1986, 43(6): 1631-1651.
[10] Naidu D S, Calise A J. Singular perturbations and time scales in guidance and control of aerospace systems: a survey[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(6): 1057-1070.
[11] 高为炳. 变结构控制理论基础[M]. 北京: 中国科学技术出版社, 1990: 28-30. Gao Weibing. Theoretic foundation of variable structure control[M]. Beijing: Chinese Science and Technology Press, 1990: 28-30. (in Chinese)
[12] Levant A. Universal single-input-single-output (SISO) sliding mode controllers with finite-time convergence [J]. IEEE Transactions on Automatic Control, 2001, 46(9): 1447-1451.
[13] 钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 2003: 8-50. Qian Xingfang, Lin Ruixiong, Zhao Ya’nan. Missile flight dynamics[M]. Beijing: Beijing Institute of Technology Press, 2003: 8-50. (in Chinese)
[14] 曾宪法, 张磊, 申功璋. 基于动态逆和分散控制的导弹控制系统设计[J]. 北京航空航天大学学报, 2007, 33(11): 1303-1307. Zeng Xianfa, Zhang Lei, Shen Gongzhang. Design of control systems for missiles based on dynamic inversion and decentralized control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(11): 1303-1307. (in Chinese)
[15] 郭锁凤, 申功璋, 吴成富, 等. 先进飞行控制系统[M]. 北京: 国防工业出版社, 2003: 246-290. Guo Suofeng, Shen Gongzhang, Wu Chengfu, et al. Advanced flight control system[M]. Beijing: National Defense Industry Press, 2003: 246-290. (in Chinese)