由于共形载体曲率的影响,共形阵列天线的阵列流形具有多极化特性。为了利用共形天线阵列流形的多极化特性,提升阵列对空间目标参数的估计性能,将天线单元的极化参数引入到导向矢量建模中,更加完整地论述了共形天线阵列流形的特点。在此基础上,建立了优化设计天线单元极化形式的目标函数,基于交替优化思想,给出了共形阵列中各天线单元最优极化形式的设计方法。以锥面共形阵列天线为例的计算机仿真实验表明,在给定阵列几何结构的前提下,通过优化天线单元的极化形式,可以有效提高阵列对空间信源方位参数估计的理论性能。
Due to the effect of the conformal carrier curvature, polarization diversity of the element patterns is a distinct feature of the conformal array antenna manifold. In order to improve the spatial parameter estimation performance by using the polarization diversity of the element patterns, this study formulated a rigorous model of the conformal array manifold with detailed consideration of polarization diversity of the element patterns which introduces the polarization parameters of the elements into the steering vector, and describes more completely the characteristics of the conformal array manifold. On this basis, the objective function for the optimal polarization design for the conformal array antennas is derived and the optimal design method for conformal array antenna with respect to element polarization is obtained by the alternating optimization theory. The simulation results with a conical conformal array antenna demonstrate that with given array geometry the theoretical performance of the direction parameter estimation can be improved effectively through optimizing element polarization.
[1] 朱建清. 电磁波工程[M]. 长沙:国防科学技术大学出版社,2000: 272-274. Zhu Jianqing. Electromagnetic wave engineering[M]. Changsha: National University of Defense Technology Press, 2000: 272-274. (in Chinese)
[2] Josefsson L, Persson P. Conformal array antenna theory and design[M]. Hoboken: John Wiley & Sons, Inc., 2006.
[3] Hwang S, Sarkar T K. Direction of arrival (DOA) estimation using a transformation matrix through singular value decomposition//Proceedings of IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetic. 2005: 353-356.
[4] Kim K, Sarkar T K. DOA estimation utilizing directive elements on a conformal surface//Proceedings of IEEE 2003 Radar Conference. 2003: 91-96.
[5] Worms J G. Superresolution with conformal broadband antenna arrays//Proceeding 2002 IEEE Radar Conference. 2002: 425-431.
[6] Worms J G. Spatial superresolution with conformal array antennas//Proceeding 2000 IEEE Radar Conference. 2000: 723-728.
[7] Do-Hong T, Fisch W, Russer P. Direction finding using spectral estimation with arbitrary antenna arrays //Proceedings of IEEE MTT-S International Microwave Symposium Digest. 2001: 1387-1390.
[8] 齐子森, 郭英, 王布宏, 等. 共形阵列天线MUSIC算法性能分析[J]. 电子与信息学报, 2008, 30(11): 2674-2677. Qi Zisen, Guo Ying, Wang Buhong, et al. Performance analysis of MUSIC for conformal array[J]. Journal of Electronics & Information Technology, 2008, 30(11): 2674-2677. (in Chinese)
[9] 王布宏, 郭英, 王永良, 等. 共形天线阵列流形的建模方法[J]. 电子学报, 2009, 37(3): 481-484. Wang Buhong, Guo Ying, Wang Yongliang, et al. Array manifold modeling for conformal array antenna[J]. Acta Electronica Sinica, 2009, 37(3): 481-484. (in Chinese)
[10] Wang B H, Guo Y, Wang Y L, et al. Frequency-invariant pattern synthesis of conformal array with low cross-polarization[J]. IET Microwaves, Antennas & Propagation, 2008, 2(5): 442-450.
[11] 齐子森, 郭英, 姬伟峰, 等. 锥面共形阵列天线盲极化DOA估计算法[J]. 电子学报, 2009, 37(9): 1919-1925. Qi Zisen, Guo Ying, Ji Weifeng, et al. Blind DOA estimation algorithm for conical conformal array antenna with respect to polarization diversity[J]. Acta Electronica Sinica, 2009, 37(9): 1919-1925. (in Chinese)
[12] 康行健. 天线原理与设计[M]. 北京:北京理工大学出版社, 1993: 32-41. Kang Xingjian. Antenna theory and design[M]. Beijing: Beijing Institute of Technology Press, 1993: 32-41. (in Chinese)
[13] Weiss A J, Friedlander B. Analysis of a signal estimation algorithm for diversely polarized arrays[J]. IEEE Transactions on Signal Processing, 1993, 41(8): 2628-2638.
[14] Friedlander B, Weiss A J. Direction finding in the presence of mutual coupling[J]. IEEE Transactions on Antennas and Propagation, 1991, 39(3): 273-284.
[15] Weiss A J, Friedlander B. "Almost blind" steering vector estimation using second-order moments[J]. IEEE Transactions on Signal Processing, 1996, 44(4): 1024-1027.