作为新型航天器姿态控制执行机构,磁悬浮反作用飞轮工作在高真空环境下且转子完全悬浮,使得热量不易散出,故需要对飞轮进行温度场计算并进行热优化设计。为此,提出一种有限元与热网络模型相结合的优化热设计方法:首先利用有限元法计算温度场分布;然后对不符合温度要求的部件建立热网络模型,分析影响温度的因素,提出优化措施。该方法具有计算精度高、优化速度快的特点。将该方法应用于某样机的热优化设计中,使飞轮的最高温度由121.6 ℃降到了52.7 ℃。对经热设计前后的两台磁悬浮反作用飞轮的实验研究证明了热设计的正确性,从而为磁悬浮飞轮系统的结构设计和热设计奠定了基础。
As a novel type of actuator of the spacecraft for attitude control, the magnetically suspended reaction flywheel operates in a vacuum with its rotor suspended, making it difficult for its inner heat to dissipate, which results in the need for temperature calculation and thermal design. In this paper, a method composed of a finite element method and a thermal network is proposed as follows: first, the finite element model calculates the temperature distribution, and then the thermal network analyzes the factors that affect the higher temperatures and provides methods for optimization to enable the method to work precisely and quickly. The method is applied to the thermal optimization of a certain magnetically suspended flywheel, and is able to decrease its maximal temperature from 121.6 ℃ to 52.7 ℃. Experiments are carried out on flywheels with and without optimization, and the results prove the feasibility of the analysis. This study may serve as a basis for the structural and thermal design of a magnetically suspended flywheel system.
[1] Hawkins L A, Murphy B T. Analysis and testing of a magnetic bearing energy storage flywheel with gain-scheduled MIMO control//Proceedings of ASME TURBO EXPO 2000. 2000: 1-8.
[2] Babuska V, Beatty S M, de Blonk B J, et al. A review of technology developments in flywheel attitude control and energy transmission systems//Proceedings IEEE Aerospace Conference. 2004: 2784-2800.
[3] 吴刚, 刘昆, 张育林. 磁悬浮飞轮技术及其应用研究[J]. 宇航学报, 2005, 26(3): 385-390. Wu Gang, Liu Kun, Zhang Yulin. Application and study of magnetic bearing flywheel technology[J]. Journal of Astronautics, 2005, 26(3): 385-390. (in Chinese)
[4] Okou R, Khan M A, Barendse P S, et al. Thermal model of electromechanical flywheel with brushless DC machine//2009 IEEE Electrical Power & Energy Conference. 2009: 1-5.
[5] 张姝娜, 房建成, 韩邦成, 等. 磁悬浮飞轮转子组件温度场分析与研究[J]. 中国惯性技术学报, 2007, 15(1): 67-71. Zhang Shu’na, Fang Jiancheng, Han Bangcheng, et al. Thermal analysis and research on magnetically suspended flywheel rotor[J]. Journal of Chinese Inertial Technology, 2007, 15(1): 67-71. (in Chinese)
[6] Huynh C, Zheng L P, Mullen P M. Thermal performance evaluation of a high-speed flywheel energy storage system//The 33rd Annual Conference of the IEEE Industrial Electronics Society. 2007(5-8): 163-168.
[7] 周超, 杨洪波. 热传导及其在航天器系统中的计算方法[J]. 计算机仿真, 2010, 27(1): 60-62. Zhou Chao, Yang Hongbo. Thermal conductivity and cal-culation methods for spacecraft[J]. Computer Simulation, 2010, 27(1): 60-62. (in Chinese)
[8] 张永红, 苏华, 刘志全, 等. 行星齿轮传动系统的稳态热分析[J]. 航空学报, 2000, 21(5): 431-433. Zhang Yonghong, Su Hua, Liu Zhiquan, et al. Steady state thermal analysis of planetary transmission systems[J]. Acta Aeronautica et Astronautica Sinica. 2000, 21(5): 431-433. (in Chinese)
[9] 李劲东. 卫星热网络模型修正技术进展及其改进方法研究[J]. 中国空间科学技术, 2004(3): 29-37. Li Jindong. Development and modification of thermal network correction techniques for satellites[J]. Chinese Space Science and Technology, 2004(3): 29-37. (in Chinese)
[10] Boglietti A, Cavagnino A, Staton D. Evolution and modern approaches for thermal analysis of electrical machines[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 871-882.
[11] 李伟力, 周封, 侯云鹏, 等. 大型水轮发电机转子温度场的有限元计算及相关因素的分析[J]. 中国电机工程学报, 2002, 22(10): 85-90. Li Weili, Zhou Feng, Hou Yunpeng, et al. Calculation of rotor temperature field for hydro-generator as well as the analysis on relevant factors[J]. Proceedings of the CSEE, 2002, 22(10): 85-90. (in Chinese)
[12] Ro S K, Kyung J H. Study on the thermal characteristics of a magnetically suspended high speed machine tool spindle//Lexington, Kentucky: Ninth International Symposium on Magnetic Bearing. 2004: 278-282.
[13] Burdet L, Aeschlimann B, Siegwart R. Thermal model for a high temperature active magnetic bearing//Lexington, Kentucky: Ninth International Symposium on Magnetic Bearing. 2004: 124-129.
[14] 王保民, 胡赤兵, 孙建仁, 等. 高速电主轴热态特性的ANSYS仿真分析[J]. 兰州理工大学学报, 2009, 35(1): 28-31. Wang Baomin, Hu Chibing, Sun Jianren, et al. Simulation analysis of thermal characteristics of high-speed mo- torized spindle by using ANSYS[J]. Journal of Lanzhou University of Technology, 2009, 35(1): 28-31. (in Chinese)
[15] 张立华. 有限元法在空间飞行器天线反射器热分析中的应用[J]. 中国空间科学技术, 1999(1): 32-37. Zhang Lihua. Application of finite element method in the thermal analysis of spacecraft antenna reflector[J]. Chinese Space Science and Technology, 1999(1): 32-37. (in Chinese)
[16] 薛晶, 李玉忍, 田广来, 等. 飞机刹车副温度场的瞬态有限元模型[J]. 航空学报, 2010, 31(3): 638-642. Xue Jing, Li Yuren, Tian Guanglai, et al. Transient temperature finite element model of airplane disk brakes[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 638-642. (in Chinese)
[17] 张斌兴. 某固体火箭发动机热结构的ANSYS有限元分析[J]. 上海航天, 2007(5): 62-64. Zhang Binxing. Finite element analysis of some SRM thermal-structure based on ANSYS software[J]. Aerospace Shanghai, 2007(5): 62-64. (in Chinese)
[18] Toda H, Xia Z P, Wang J B, et al. Rotor eddy current loss in permanent magnet brushless machines[J]. IEEE Transactions on Magnetics, 2004, 40(1): 2104-2107.
[19] Yoshida K, Hita Y, Kesamaru K. Eddy-current loss analysis in PM of surface-mounted-PM SM for electric vehicles[J]. IEEE Transactions on Magnetics, 2000, 36(4): 1941-1944.
[20] Meeker D C, Filatov A V,Moslen E H. Effect of magnetic hysteresis on rotational losses in heteropolar magnetic bearing[J]. IEEE Transactions on Magnetics, 2004, 40(5): 3302-3307.