给出了一种多方向振动能量收集装置的设计结构。为研究Rainbow型压电单膜片换能结构材料、尺寸参数、负载电阻对其输出功率的影响,根据压电材料的机电耦合方程和弹性力学理论,建立了Rainbow型压电单膜片换能结构负载电压及输出功率的理论模型。对所建理论模型进行了数值计算和验证测试,理论计算结果及测试结果具有较好的一致性,对应的最大输出功率误差为5%,说明了本文理论推导的可靠性。同时通过数值模拟发现:金属弹性基片长度、压电薄膜宽度的增加将会引起换能结构输出功率的增加;金属弹性基片宽度和厚度、换能结构初始曲率半径的增大将会使换能结构的输出功率下降;压电薄膜长度和厚度的增加将会使换能结构的输出功率先增加后减小;铍青铜基片换能结构要优于钢基片换能结构。
A design structure is developed in this article to harvest multi-direction vibration energy with piezoelectric monomorph energy transferring elements. According to the basic equations of piezoelectric materials and their mechanical analysis, the load voltage and output power models of the Rainbow shape piezoelectric monomorph energy transferring elements are established, which are then used to study the relationships between their output power and material shape parameters as well as their load resistance. A prototype of the Rainbow shape piezoelectric monomorph energy transferring elements is designed to validate the models. The results show that the calculation results are consistent with the experimental results, with the error of maximum output power being 5%. Moreover, the output power of the piezoelectric film increases as the length of the metal substrate and the width of the piezoelectric film increase, while it decreases as the width and thickness of the metal substrate and the initial curvature radius of the energy transferring elements increase. The output power of the piezoelectric film reaches maximum and then decreases as the length and thickness of the piezoelectric film increase. Furthermore, beryllium bronze substrate energy transferring elements are found to be superior to steel substrate energy transferring elements.
[1] Roundy S, Wright P K, Pister K S. Micro-electrostatic vibration to electricity converters//Proceedings of ASME International Mechanical Engineering Congress & Exposition. New Orleans, Louisiana: ASME, 2002: 1-10.
[2] 袁江波, 谢涛, 单小彪, 等. 压电俘能技术研究现状综述[J]. 振动与冲击, 2009, 28(10): 36-42. Yuan Jiangbo, Xie Tao, Shan Xiaobiao, et al. A review of current situation for piezoelectric energy harvesting[J]. Journal of Vibration and Shock, 2009, 28(10): 36-42. (in Chinese)
[3] Jiang S N, Li X F, Guo S H, et al. Performance of a piezoelectric bimorph for scavenging vibration energy[J]. Smart Materials and Structures, 2005, 14(4): 769-774.
[4] Hu Y T, Xue H, Hu H P, et al. A piezoelectric power harvester with adjustable frequency through axial preloads[J]. Smart Materials and Structures, 2007, 16(5): 1961-1966.
[5] Jiang S N, Hu Y T. Analysis of a piezoelectric bimorph plate with a central-attached mass as an energy harvester[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2007, 54(7): 1463-1469.
[6] Glynne-Jones P, Tudor M J, Beeby S P, et a1. An electroma gnetic vibration powered generator for intelligent sensor sytems[J]. Sensors and Actuators A: Physical, 2004, 110(1-3): 344-349.
[7] Mitcheson P D, Miao P, Stark B H, et a1. MEMS electrostatic micropower generator for low frequency oper- ation[J]. Sensors and Actuators A: Physical, 2004, 115(2-3): 523-529.
[8] 李林, 郭隐彪, 陈旭远. 基于微机电系统的振动能量采集器件设计分析[J]. 机械工程学报, 2009, 45 (9): 238-242. Li Lin, Guo Yinbiao, Chen Xuyuan. Design and analysis of vibration energy collector based on MEMS[J]. Journal of Mechanical Engineering, 2009, 45(9): 238-242. (in Chinese)
[9] Jeon Y B, Sood R, Jeong J H, et al. MEMS power generator with transverse mode thin film PZT[J]. Sensors and Actuators A: Physical, 2005, 122(1): 16-22.
[10] Kim S, Clark W W, Wang Q M. Piezoelectric energy harvesting with a clamped circular plate: analysis[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(10): 847-854.
[11] Roundy S, Wright P K, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes[J]. Computer Communications, 2003, 26(11): 1131-1144.
[12] Roundy S. On the effectiveness of vibration-based energy harvesting[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(10): 809-823.
[13] Yuan J B, Xie T, Shan X B, et al. Resonant frequencies of a piezoelectric drum transducer[J]. Journal of Zhejiang University: Science A, 2009, 10(9): 1313-1319.
[14] Sodano H A, Inman D J, Park G. Generation and storage of electricity from power harvesting devices[J]. Journal of Intelligent Material Systems Structures, 2005, 16(1): 67-75.
[15] 陶宝祺. 智能材料结构[M]. 北京: 国防工业出版社, 1997: 59-64. Tao Baoqi. Smart material structure[M]. Beijing: Nati- onal Defence Industrial Press, 1997: 59-64. (in Chinese)
[16] 娄利飞, 杨银堂, 樊永祥, 等. 压电薄膜微传感器振动模态的仿真分析[J]. 振动与冲击, 2006, 25(4): 165-168. Lou Lifei, Yang Yintang, Fan Yongxiang, et a1. The vibration modal analysis of piezoelectric thin film micro sensor[J]. Journal of Vibration and Shock, 2006, 25(4): 165-168. (in Chinese)