以大型空间绳系辅助返回系统为背景,利用微元法和拉格朗日方程建立有分布质量的柔性绳系辅助返回系统的展开动力学模型。针对模型复杂的非线性和强耦合问题,采用Galerkin法进行离散化处理以求解;引入经典的珠子模型,以验证Galerkin法解的准确性;最后通过数学仿真来验证和分析Galerkin法解的正确性和收敛性, 并对绳系辅助返回系统的展开动力学特性进行适当的分析。仿真结果表明:本文建立的柔性绳系辅助返回系统的展开动力学模型以及基于Galerkin法对动力学模型的求解是正确的,解法是收敛的。
Under the background of big tethered-assisted return system, the deployment dynamic model for mass-distributed flexible tethered-assisted return system is given based on the micro-element method and Lagrange equation. For the complicated nonlinear and strongly coupled dynamic model, the dynamic model is discretize to obtain numerical solution by Galerkin method, and the typical lumped mass model is introduced to validate the Galerkin method. Then a mathematical simulation is provided to validate the solution of the Galerkin method, and analyze the dynamic characteristics of the system. The result indicates that the model for mass-distributed flexible tethered-assisted return system given in this article is correct, and the solution obtained by Galerkin method is also accurate and convergent.
[1] Zimmermann F, Schttle U M, Messerschmid E. Optimal deployment and return trajectories for a tether-assisted re-entry mission//AIAA Atmospheric Flight Mechanics Conference and Exhibit. 1999.
[2] Burkhardt J, Zimmermann F, Schttle U M. Operational use of guided reentry capsules-system design solutions and mission safety considerations[J]. Aerospace Science and Technology, 2004, 8(7): 635-644.
[3] Gilbert C, Bremen A G, Mazoue F. New space application opportunities based on the inflatable reentry & descent technology IRDT//AIAA International Air and Space Symposium and Exposition: The Next 100 Years. 2003.
[4] Jin D P, Hu H Y. Optimal control of a tethered subsatellite of three degrees of freedom[J]. Nonlinear Dynamics, 2006, 46(1-2): 161-178.
[5] Kumar K, Pradeep S. Strategies for three dimensional deployment of tethered satellites[J]. Mechanics Research Communications, 1998, 25(5): 543-550.
[6] Licata R. Tethered system deployment controls by feedback fuzzy logic[J]. Acta Astronautica, 1997, 40(9): 619-634.
[7] Vadali S R, Kimf E S. Feedback control of tethered satellites using Lyapunov stability theory[J]. Journal of Guidance, Control, and Dynamics, 1991, 14(4): 729-735.
[8] Glβel H, Zimmermann F, Brückner S, et al. Adaptive neural control of the deployment procedure for tether-assisted re-entry[J]. Aerospace Science and Technology, 2004, 8(1): 73-81.
[9] Pasca M, Lorenzini E C. Two analytical models for the analysis of a tethered satellite system in atmosphere[J]. Meccanica, 1997(32): 263-277.
[10] No T S, Cochran J E, Jr. Dynamics and control of a tethered flight vehicle[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(1): 66-72.
[11] Banerjee A K. Dynamics of tethered payloads with deployment rate control[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(4): 759-762.
[12] 彭建华, 刘延柱. 绳系卫星的混沌运动[J]. 上海交通大学学报, 1996, 30(11): 32-35. Peng Jianhua, Liu Yanzhu. Chaos in the tethered satellite system[J]. Journal of Shanghai Jiaotong University, 1996, 30(11): 32-35. (in Chinese)
[13] 于绍华, 刘强. 有分布质量系绳的卫星系统的动力学[J]. 宇航学报,2001, 22(3): 52-61. Yu Shaohua, Liu Qiang. Dynamics of mass distributed tether system[J]. Journal of Astronautics, 2001, 22(3): 52-61. (in Chinese)
[14] Mankala K K, Agrawal S K. Dynamic modeling and simulation of satellite tethered systems[J]. Transaction of the ASME, 2005, 127(2): 144-156.
[15] Kim E, Vadali S R. Modeling issues related to retrieval of flexible tethered satellite systems[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(5): 1169-1176.
[16] 祝同江, 谈天民. 工程数学——变分法[M]. 北京: 北京理工大学出版社,1994: 237-334. Zhu Tongjiang, Tan Tianmin. Engineering mathematics—calculus of variations[M]. Beijing: Beijing Institute of Technology Press, 1994: 237-334. (in Chinese)
[17] 梁立孚. 变分原理及其应用[M]. 哈尔滨:哈尔滨工业大学出版社,2005: 225-228. Liang Lifu. Variational principle and its application[M]. Harbin: Harbin Institute of Technology Press, 2005: 225-228. (in Chinese)
[18] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003: 18-28. Wang Xucheng. Finite element method[M]. Beijing: Tsinghua University Press, 2003: 18-28. (in Chinese)
[19] Chen L Q, Zhang N H, Zu J W. The regular and chaotic vibrations of an axially moving viscoelastic string based on 4-order Galerkin truncation[J]. Journal of Sound Vibration, 2003,261(4): 764-773.
[20] Chen L Q, Zhang W, Zu J W. Nonlinear dynamics for transverse motion of axially moving strings[J]. Chaos, Solitons and Fractals, 2009, 40(1): 78-90.