流体力学与飞行力学

多场耦合计算平台与高超声速热防护结构传热问题研究

展开
  • 南京航空航天大学 航空宇航学院, 江苏 南京 210016
张兵(1981- ) 男,博士研究生。主要研究方向:飞行器气动弹性力学。 E-mail: zhangbing_end@163.com韩景龙(1952) 男,博士,教授,博士生导师。主要研究方向:飞行器气动弹性力学,复杂结构动力学与控制。 Tel: 025-84896484 E-mail: hjlae@nuaa.edu.cn

收稿日期: 2010-06-29

  修回日期: 2010-10-09

  网络出版日期: 2011-03-24

基金资助

国家自然科学基金(10872089)

Multi-field Coupled Computing Platform and Thermal Transfer of Hypersonic Thermal Protection Structures

Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2010-06-29

  Revised date: 2010-10-09

  Online published: 2011-03-24

摘要

从有限元法(FEM)和有限体积法(FVM)的单元特性出发,提出一种具有局部守恒特性的界面载荷插值方法。采用共享内存技术开发适用于通用有限元和计算流体力学(CFD)软件的多场耦合计算平台,并基于分区耦合方式实现流固耦合传热计算。作为验证,分别将ANSYS与Fluent和CFD-FASTRAN软件进行耦合,计算外壁冷却的喷管和高超声速圆柱绕流的耦合传热问题,结果与实验值吻合良好。针对类X-34飞行器的头部热防护结构(TSP),考虑材料非线性和辐射效应,对高超声速巡航状态下驻点温度和结构冷却系统功率随热防护层厚度的变化规律进行了研究。计算结果表明:驻点温度随热防护层厚度的变化并不明显,而冷却系统功率随热防护层厚度增加急剧降低;此外,材料发射率非线性对结果影响较大。

本文引用格式

张兵, 韩景龙 . 多场耦合计算平台与高超声速热防护结构传热问题研究[J]. 航空学报, 2011 , 32(3) : 400 -409 . DOI: CNKI:11-1929/V.20101229.1626.001

Abstract

A multi-field coupled computing platform using multi-zone iteration is developed to solve conjugate heat transfer problems. Based on the element features of the finite element method (FEM) and finite volume method (FVM), a local conservative remapping method is presented for thermal flux and aerodynamic load interpolation. Shared memory is employed for faster data exchange for the general FEMs/computational fluid dynamics (CFD) software. The problems of conjugate heat transfer for a cooled converging-diverging nozzle and a cylindrical leading edge in hypersonic flow are studied. Effects of mesh density, nonlinear material properties and radiation are considered during the computation,and the results show good agreement with the existing experimental data. The relationships are investigated between the stagnation temperature, cooling power and the thickness of the nose thermal protection structure (TPS) of a quasi-X-34 hypersonic vehicle under hypersonic cruise conditions. The results indicate that the thickness variations exhibit no significant influence on stagnation temperature, while the cooling power drops sharply as the thickness increases. Furthermore, the nonlinear material emission pro-perties have significant influence on the analysis results.

参考文献

[1] Dukowicz J K, Kodis J W. Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations[J]. SIAM Journal of Scientific and Statistical Computing, 1987, 8(3): 305-321. [2] Jones P W. First- and second-order conservative remapping schemes for grids in spherical coordinates[J]. Monthly Weather Review, 1999, 127(9): 2204-2210. [3] Grandy J. Conservative remapping and region overlays by intersecting arbitrary polyhedra[J]. Journal of Computational Physics, 1999, 148(2): 433-466. [4] Kucharik M, Shashkov M, Wendroff B. An efficient linearity-and-bound-preserving remapping method[J]. Journal of Computational Physics, 2003, 188(2): 462-471. [5] Milos F S, Squire T H. Thermostructural analysis of X-34 wing leading-edge tile thermal protection system[J]. Journal of Spacecraft and Rockets, 1999, 36(2): 189-198. [6] 吴洁, 闫超. 气动热与热响应的耦合研究[J]. 导弹与航天运载技术, 2009(4): 35-39. Wu Jie, Yan Chao. Research on the coupling of aerodynamic heating and thermal response[J]. Missile and Space Vehicles, 2009(4): 35-39. (in Chinese) [7] 耿湘人, 张涵信, 沈清, 等. 高速飞行器流场和固体结构温度场一体化计算新方法的初步研究[J]. 空气动力学学报, 2002, 20(4): 422-427. Geng Xiangren, Zhang Hanxin, Shen Qing, et al. Study on an integrated algorithm for the flowfields of high speed vehicles and the heat transfer in solid structures[J]. Acta Aerodynamica Sinica, 2002, 20(4): 422-427. (in Chinese) [8] 陶文铨. 数值传热学[M]. 2版. 西安:西安交通大学出版社, 2006: 485. Tao Wenquan. Numerical heat transfer[M]. 2nd ed. Xi’an: Xi’an Jiaotong University Press, 2006: 485. (in Chinese) [9] Lee D T, Wong C K. Worst-cast analysis for region and partial region searches in multidimensional binary search trees and balanced quad trees[J]. Acta Informatica, 1977, 9(1): 23-29. [10] ANSYS Inc. Programmer’s manual for mechanical APDL: Version 12. 1[M]. Shanghai: ANSYS Inc., 2009. [11] ANSYS Inc. ANSYS fluent UDF manual: Version 12. 0[M]. Shanghai: ANSYS Inc., 2009. [12] Back L H, Massier P F, Gier H L. Convective heat transfer in a convergent-divergent nozzle[J]. International Journal of Heat Mass Transfer, 1964, 7(5): 549-568. [13] Liu Q Y, Luke E A, CinnellA P. Coupling heat transfer and fluid flow solvers for multi-disciplinary simulations. AIAA-2004-966, 2004. [14] Wieting A R. Experimental study of shock wave interfer- ence heating on a cylindrical leading edge. NASA-TM-100484, 1987. [15] Dechaumphai P, Thornton E A, Wieting A R. Flow-thermal-structural study of aerodynamically heated leading edges[J]. Journal of Spacecraft, 1999, 26(4): 201-209. [16] Ng W H, Friedmann P P, Wass A. Thermomechanical analysis of a thermal protection system with defects and heat shorts. AIAA-2006-2212, 2006.
文章导航

/