| [1] |
ZAID A ABU, BELMEKKI B E Y, ALOUINI M S. eVTOL communications and networking in UAM: requirements, key enablers, and challenges[J]. IEEE Communications Magazine, 2023, 61(8): 154-160.
|
| [2] |
ZHAO W, WANG Y Q, LI L Q, et al. Design and flight simulation verification of the dragonfly eVTOL aircraft[J]. Drones, 2024, 8(7): 311.
|
| [3] |
邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报, 2024, 45(5): 55-77.
|
|
DENG J H. Technical status and development of electric vertical take-off and landing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 55-77 (in Chinese).
|
| [4] |
SHAHJAHAN S, GONG A, MOORE A, et al. Optimisation of proprotors for tilt-wing eVTOL aircraft[J]. Aerospace Science and Technology, 2024, 144: 108835.
|
| [5] |
DIXIT M, BISHT A, WITHERSPOON B, et al. Battery electrolyte design for electric vertical takeoff and landing (eVTOL) platforms[J]. Advanced Energy Materials, 2024, 14(29): 2400772.
|
| [6] |
王科雷, 周洲, 郭佳豪, 等. 分布式动力翼前飞状态动力/气动耦合特性[J]. 航空学报, 2024, 45(2):137-155.
|
|
WANG K L, ZHOU Z, GUOJIA H, et al. Propulsive/aerodynamic coupled characteristics of distributed-propulsion-wing during forward flight[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 137-155 (in Chinese).
|
| [7] |
PARK J, LEE D, LIM D, et al. A refined sizing method of fuel cell-battery hybrid system for eVTOL aircraft[J]. Applied Energy, 2022, 328: 120160.
|
| [8] |
于昊亮, 雷涛, 张星雨, 等. 一种分布式电推进飞机的多学科参数快速估计方法[J]. 航空科学技术, 2024, 35(1): 65-74.
|
|
YU H L, LEI T, ZHANG X Y, et al. A fast multidisciplinary parameter estimation method for distributed electric propulsion aircraft[J]. Aeronautical Science & Technology, 2024, 35(1): 65-74 (in Chinese).
|
| [9] |
WANG M, DIEPOLDER J, ZHANG S, et al. Trajectory optimization-based maneuverability assessment of eVTOL aircraft[J]. Aerospace Science and Technology, 2021, 117: 106903.
|
| [10] |
TEKIN M, KARAMANGIL M İ. Comparative analysis of equivalent circuit battery models for electric vehicle battery management systems[J]. Journal of Energy Storage, 2024, 86: 111327.
|
| [11] |
彭纪昌, 刘凯龙, 孟锦豪, 等. 基于变参数结构的锂离子电池建模方法[J]. 机械工程学报, 2024, 60(14): 298-305.
|
|
PENG J C, LIU K L, MENG J H, et al. Dynamically parameterized structure for lithium-ion battery method[J]. Journal of Mechanical Engineering, 2024, 60(14): 298-305 (in Chinese).
|
| [12] |
龙潘, 耿光超, 江全元, 等. 储能系统锂电池电热耦合建模及参数辨识方法研究[J]. 太阳能学报, 2024, 45(4): 318-327.
|
|
LONG P, GENG G C, JIANG Q Y, et al. Study on electrothermal coupling modeling and parameter identification of lithium battery energy storage system[J]. Acta Energiae Solaris Sinica, 2024, 45(4): 318-327 (in Chinese).
|
| [13] |
GARCÍA-RODRÍGUEZ V H, SILVA-ORTIGOZA R, HERNÁNDEZ-MÁRQUEZ E, et al. DC/DC boost converter-inverter as driver for a DC motor: Modeling and experimental verification[J]. Energies, 2018, 11(8): 2044.
|
| [14] |
吴雨林, 李众. 无刷直流电机的分数阶建模方法[J]. 计算机与数字工程, 2022, 50(2): 453-457.
|
|
WU Y L, LI Z. Method of fractional order modeling for BLDCM[J]. Computer & Digital Engineering, 2022, 50(2): 453-457 (in Chinese).
|
| [15] |
SHI D J, DAI X H, ZHANG X W, et al. A practical performance evaluation method for electric multicopters[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(3): 1337-1348.
|
| [16] |
雷涛, 孔德林, 王润龙, 等. 分布式电推进飞机动力系统评估优化方法[J]. 航空学报, 2021, 42(6): 44-63.
|
|
LEI T, KONG D L, WANG R L, et al. Evaluation and optimization method for power systems of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 44-63 (in Chinese).
|
| [17] |
WANG M K, ZHANG S G, JOHANNES D, et al. Battery package design optimization for small electric aircraft[J]. Chinese Journal of Aeronautics, 2020, 33(11): 2864-2876.
|
| [18] |
张茂权, 陈海昕. 小型电动无人机航程航时估算模型[J]. 航空学报, 2021, 42(3): 104-112.
|
|
ZHANG M Q, CHEN H X. Estimated model of range and endurance of small electric UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 104-112 (in Chinese).
|
| [19] |
邓涛, 谭溪, 熊志豪, 等. 垂直起降固定翼无人机混合电推进系统设计与仿真研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(10): 156-162.
|
|
DENG T, TAN X, XIONG Z H, et al. Design and simulation of hybrid electric propulsion system for convertiplane[J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(10): 156-162 (in Chinese).
|
| [20] |
GRANADO L, BEN-MARZOUK M, SOLANO SAENZ E, et al. Machine learning predictions of lithium-ion battery state-of-health for eVTOL applications[J]. Journal of Power Sources, 2022, 548: 232051.
|
| [21] |
岳永胜, 孙冬, 许爽, 等. 锂离子电池等效电路模型的研究进展[J]. 电池, 2023, 53(6): 682-686.
|
|
YUE Y S, SUN D, XU S, et al. Research progress in equivalent circuit model for Li-ion battery[J]. Battery Bimonthly, 2023, 53(6): 682-686 (in Chinese).
|
| [22] |
TOMASOV M, KAJANOVA M, BRACINIK P, et al. Overview of battery models for sustainable power and transport applications[J]. Transportation Research Procedia, 2019, 40: 548-555.
|
| [23] |
LI M T, CAO Y, WANG C S, et al. Evaluation and analysis of circuit model for lithium batteries[C]∥2022 41st Chinese Control Conference (CCC). Piscataway: IEEE Press, 2022: 1343-1348.
|
| [24] |
FULLER M E. A battery model for constant-power discharge including rate effects[J]. Energy Conversion and Management, 2014, 88: 199-205.
|
| [25] |
MOUSSA S, GHORBAL M J BEN. Shepherd battery model parametrization for battery emulation in EV charging application[C]∥2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM). Piscataway: IEEE Press, 2022: 1-6.
|
| [26] |
FOTOUHI A, AUGER D J, PROPP K, et al. Lithium-sulfur battery state-of-charge observability analysis and estimation[J]. IEEE Transactions on Power Electronics, 2018, 33(7): 5847-5859.
|
| [27] |
NIKOLIAN A, DE HOOG J, FLEURBAEY K, et al. Classification of electric modeling and characterization methods of lithium-ion batteries for vehicle applications[C]∥Proceedings of the European Electric Vehicle Congress 2014 . Brussels: European Electric Vehicle Congress, 2014: 13-16.
|
| [28] |
代云腾, 彭乔, 刘天琪, 等. 适应高电流倍率工况的锂离子电池等效电路模型[J]. 储能科学与技术, 2023, 12(11): 3528-3537.
|
|
DAI Y T, PENG Q, LIU T Q, et al. Application of equivalent circuit model of lithium-ion batteries to high current rate condition[J]. Energy Storage Science and Technology, 2023, 12(11): 3528-3537 (in Chinese).
|
| [29] |
毛琦, 祝乔, 徐志杰, 等. 基于粒子群优化算法的锂电池模型参数辨识[J]. 电工技术, 2021(12): 156-157.
|
|
MAO Q, ZHU Q, XU Z J, et al. Parameter identification of batter model based on the particle swarm optimization[J]. Electric Engineering, 2021(12): 156-157 (in Chinese).
|
| [30] |
刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社, 2006: 75-82.
|
|
LIU P Q. Air propeller theory and its application[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2006: 75-82 (in Chinese).
|
| [31] |
BANGURA M, LIM H, KIM H J, et al. Aerodynamic power control for multirotor aerial vehicles[C]∥2014 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2014: 529-536.
|
| [32] |
LINDAHL P, MOOG E, SHAW S R. Simulation, design, and validation of an UAV SOFC propulsion system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2582-2593.
|
| [33] |
DAI X H, QUAN Q, REN J R, et al. An analytical design-optimization method for electric propulsion systems of multicopter UAVs with desired hovering endurance[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(1): 228-239.
|
| [34] |
QIN J C, ZHOU Z, YANG G W, et al. Aero-propulsive coupling modeling and dynamic stability analysis of distributed electric propulsion tandem-wing UAV with rapid ascent capability[J]. Aerospace Science and Technology, 2024, 153: 109406.
|