航空学报 > 2025, Vol. 46 Issue (15): 131513-131513   doi: 10.7527/S1000-6893.2025.31513

面向eVTOL/eSTOL的分布式动力能源系统高精度建模与仿真

孙三亚1,2, 邵壮1,2(), 周洲1,2, 王科雷1,2, 宗嘉1,2   

  1. 1.西北工业大学 航空学院,西安 710072
    2.飞行器基础布局全国重点实验室,西安 710072
  • 收稿日期:2024-11-11 修回日期:2024-12-18 接受日期:2025-02-03 出版日期:2025-02-10 发布日期:2025-02-10
  • 通讯作者: 邵壮 E-mail:shaozhuang233@nwpu.edu.cn
  • 基金资助:
    特色学科基础研究项目(G2022WD);航空科学基金(2024Z006053001)

High-precision modeling and simulation of distributed propulsion energy systems for eVTOL/eSTOL

Sanya SUN1,2, Zhuang SHAO1,2(), Zhou ZHOU1,2, Kelei WANG1,2, Jia ZONG1,2   

  1. 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.National Key Laboratory of Aircraft Configuration Design,Xi’an 710072,China
  • Received:2024-11-11 Revised:2024-12-18 Accepted:2025-02-03 Online:2025-02-10 Published:2025-02-10
  • Contact: Zhuang SHAO E-mail:shaozhuang233@nwpu.edu.cn
  • Supported by:
    Basic Research Project for Featured Disciplines of China(G2022WD);Aeronautical Science Foundation of China(2024Z006053001)

摘要:

围绕电动垂直起降飞行器(eVTOL)/电动短距起降飞行器(eSTOL)等分布式电推进飞行器功率负载变化剧烈、复杂输电系统损耗大等带来的动力能源系统难以准确评估的问题,提出一种适用于无人机全飞行过程的高精度动力能源系统建模评估方法。建立了基于二阶RC(由电阻R、电容C并联构成的电路单元)电路模型的能源系统模型,结合电池放电实验数据通过粒子群算法辨识获取模型关键参数,构建了包括螺旋桨、电机、电调、输电线缆的推进系统模型;基于隐函数方程组搭建了适用于全过程高精度模型的无人机动力能源系统工作状态计算框架,与实验数据进行对比验证;针对某项目的分布式电推进无人机开展动力能源系统仿真评估,完成了输电线缆布局优化设计。结果显示,能源系统的电压预测误差、系统状态计算框架误差均小于2%,模型可准确反映全飞行过程各部件工作状态变化,优化后的输电线缆布局电压损失减少了17.2%,平均功率损失减少了16.36%,验证了本方法的准确性、有效性。

关键词: 分布式电推进, 动力能源系统建模, 二阶RC模型, 工作状态计算框架, 输电线缆布局优化

Abstract:

Addressing the challenges posed by drastic power load variations and high losses in complex transmission systems for distributed electric propulsion aircraft such as electric Vertical Take-Off and Landing/ electric Short Take-Off and Landing(eVTOL/eSTOL), this paper proposes a high-precision power and energy system modeling and evaluation method applicable to the entire flight process of unmanned aerial vehicles (UAVs). We first establish an energy system model based on a second-order RC battery model, identifying key parameters through a particle swarm algorithm using battery discharge experimental data, and construct a propulsion system model including propellers, motors, Electronic Speed Controllers (ESCs), and transmission cables. Subsequently, a working state calculation framework for the UAV power and energy system based on an implicit function equation system is introduced and validated against experimental data. Finally, a simulation assessment of the power and energy system is conducted for a specific project involving a distributed electric propulsion UAV, alongside the optimization design of the transmission cable layout. The results indicate that both the voltage prediction error of the energy system and the errors in the system state calculation framework are smaller than 2%. The model accurately reflects the operational state changes of each component throughout the entire flight process, and the optimized transmission cable layout reduces voltage loss by 17.2% and average power loss by 16.36%, thereby verifying the accuracy and validity of the proposed method.

Key words: distributed electric propulsion, power and energy system modeling, second-order RC battery model, working state calculation framework modeling, transmission cable layout optimization

中图分类号: