航空学报 > 2025, Vol. 46 Issue (11): 531479-531479   doi: 10.7527/S1000-6893.2025.31479

基于复杂网络的城市低空飞行计划优化调度

钟罡1(), 华骏鸣1, 杜森1, 刘玉璞1, 刘皞2, 张洪海1   

  1. 1.南京航空航天大学 民航学院,南京 210016
    2.南京航空航天大学 数学学院,南京 210016
  • 收稿日期:2024-11-01 修回日期:2024-12-31 接受日期:2025-01-03 出版日期:2025-01-10 发布日期:2025-01-10
  • 通讯作者: 钟罡 E-mail:zg1991@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金民航联合基金重点项目(U2333214);中国博士后科学基金(2023M741687);中央高校基本科研业务费专项资金(NS2023037)

Urban low-altitude flight plan optimal scheduling based on complex network

Gang ZHONG1(), Junming HUA1, Sen DU1, Yupu LIU1, Hao LIU2, Honghai ZHANG1   

  1. 1.College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.College of Mathematics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • Received:2024-11-01 Revised:2024-12-31 Accepted:2025-01-03 Online:2025-01-10 Published:2025-01-10
  • Contact: Gang ZHONG E-mail:zg1991@nuaa.edu.cn
  • Supported by:
    Joint Funds of the National Natural Science Foundation of China and Civil Aviation Administration of China Key Project(U2333214);China Postdoctoral Science Foundation(2023M741687);Fundamental Research Funds for the Central Universities(NS2023037)

摘要:

城市空中交通发展面临密集飞行活动带来的风险管理与效率提升问题,聚焦城市低空无人机集群的飞行前阶段,提出了基于复杂网络的飞行计划两阶段优化调度方法。首先,基于数字空域栅格环境下无人机飞行潜在的第三方风险,预先规划单无人机的四维航迹并生成无人机集群初始飞行计划;其次,提出飞行不确定性影响下的冲突探测模型,构建以飞行计划为节点、飞行冲突为连边的冲突复杂网络,通过提取计算冲突复杂网络拓扑指标来识别关键飞行计划;最后,建立了融合地面等待、速度调整和局部改航等多种策略的飞行计划优化调度模型,设计了先整体优化关键飞行计划再局部调整剩余冲突点的两阶段优化算法框架,并基于改进的海市蜃楼优化算法(FATA)实现模型求解。实验结果表明,该方法能够在考虑飞行不确定性的情况下显著减少甚至完全消除飞行冲突,同时可以保证在飞行计划调度过程中造成延误的飞行计划数量不超过总数量的3%,并保持增加的总运行风险比例不超过1%。研究成果能够为城市低空飞行计划调度管理提供技术支撑,对推动城市空中交通安全有序发展具有指导意义。

关键词: 城市空中交通, 飞行计划, 复杂网络, 飞行冲突管理, 优化调度

Abstract:

With the development of the low-altitude economy, Urban Air Mobility (UAM) confronts the challenges in risk management and efficiency due to dense flight operations. This study addresses the pre-flight phase of urban low-altitude Unmanned Aerial Vehicle (UAV) swarms, and introduces a two-stage optimal scheduling approach for flight plans utilizing complex network. Initially, considering the potential third-party risks of UAV flight, the four-dimensional trajectory for individual UAVs is pre-planned within a digital airspace grid environment to generate an initial four-dimensional flight plan for the UAV swarm. Subsequently, to address flight uncertainty, a conflict detection model is proposed to construct a complex network where flight plans are nodes and conflicts are edges. Important flight plans are identified by analyzing topological metrics of the complex network. Finally, an integrated flight plan optimal scheduling model is established, incorporating strategies such as ground holding, speed adjustment, and local re-routing. A two-stage optimization algorithm frame is developed to globally optimize key flight plans and then locally adjust remaining conflicts, and is solved based on the improved Fata morgana algorithm. Experimental results demonstrate that this method can significantly reduce or eliminate flight conflicts considering flight uncertainty, ensuring that delayed flight plans constitute no more than 3% of the total and increasing operational risk by no more than 1%. These findings offer technical support for urban low-altitude flight plan scheduling management, and are instrumental in fostering safe and orderly progression of urban air traffic.

Key words: urban air mobility, flight plan, complex network, flight conflict management, optimal scheduling

中图分类号: