1 |
GU X Y, CIAMPA P D, NAGEL B. An automated CFD analysis workflow in overall aircraft design applications[J]. CEAS Aeronautical Journal, 2018, 9(1): 3-13.
|
2 |
MCCORMICK D J. An analysis of using CFD in conceptual aircraft design[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2002.
|
3 |
RAJ P. Aircraft design in the 21st century-Implications for design methods[C]∥29th AIAA, Fluid Dynamics Conference. Reston: AIAA, 1998.
|
4 |
VIVIANI A, APROVITOLA A, PEZZELLA G, et al. CFD design capabilities for next generation high-speed aircraft[J]. Acta Astronautica, 2021, 178: 143-158.
|
5 |
KNUPP P M. Algebraic mesh quality metrics for unstructured initial meshes[J]. Finite Elements in Analysis and Design, 2003, 39(3): 217-241.
|
6 |
KNUPP P M. Algebraic mesh quality metrics[J]. SIAM Journal on Scientific Computing, 2001, 23(1): 193-218.
|
7 |
KNUPP P. Remarks on mesh quality[R]. Albuquerque: Sandia National Lab., 2007.
|
8 |
PRASAD T. A comparative study of mesh smoothing methods with flipping in 2D and 3D[D]. Camden: Rutgers University-Camden Graduate School, 2018.
|
9 |
FIELD D A. Laplacian smoothing and delaunay triangulations[J]. Communications in Applied Numerical Methods, 1988, 4(6): 709-712.
|
10 |
ZHOU T X, SHIMADA K. An angle-based approach to two-dimensional mesh smoothing[C]∥International Meshing Roundtable Conference, 2000. Albuquerque: Sandia National Laboratories, 2000: 373-384.
|
11 |
VARTZIOTIS D, PAPADRAKAKIS M. Improved GETMe by adaptive mesh smoothing[J]. Computer Assisted Methods in Engineering and Science, 2017, 20(1): 55-71.
|
12 |
SCOTT A CANANN S A SA, TRISTANO J J R, STATEN M M L. An approach to combined Laplacian and optimization-based smoothing for triangular, quadrilateral, and quad-dominant meshes[J]. 7th International Meshing Roundtable, 1998: 479-494.
|
13 |
WANG J, YU Z Y. Quality mesh smoothing via local surface fitting and optimum projection[J]. Graphical Models, 2011, 73(4): 127-139.
|
14 |
PARTHASARATHY V N, KODIYALAM S. A constrained optimization approach to finite element mesh smoothing[J]. Finite Elements in Analysis and Design, 1991, 9(4): 309-320.
|
15 |
GUO Y F, WANG C R, MA Z, et al. A new mesh smoothing method based on a neural network[J]. Computational Mechanics, 2022, 69(2): 425-438.
|
16 |
WANG Z C, CHEN X H, YAN J J, et al. Proposing an intelligent mesh smoothing method with graph neural networks[DB/OL]. arXiv Preprint: 2311.12815, 2023.
|
17 |
WANG N H, ZHANG L P, DENG X G. Unstructured surface mesh smoothing method based on deep reinforcement learning[J]. Computational Mechanics, 2024, 73(2): 341-364.
|
18 |
DU Q, GUNZBURGER M. Grid generation and optimization based on centroidal Voronoi tessellations[J]. Applied Mathematics and Computation, 2002, 133(2-3): 591-607.
|
19 |
DU Q, WANG D S. Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations[J]. International Journal for Numerical Methods in Engineering, 2003, 56(9): 1355-1373.
|
20 |
CHEN X H, LIU J, GONG C Y, et al. MVE-net: an automatic 3-D structured mesh validity evaluation framework using deep neural networks[J]. Computer-Aided Design, 2021, 141: 103104.
|
21 |
CHEN X H, LI T J, WAN Q, et al. MGNet: a novel differential mesh generation method based on unsupervised neural networks[J]. Engineering with Computers, 2022, 38(5): 4409-4421.
|
22 |
ZHANG Z Y, JIMACK P K, WANG H. MeshingNet3D: Efficient generation of adapted tetrahedral meshes for computational mechanics[J]. Advances in Engineering Software, 2021, 157: 103021.
|
23 |
WANG Z C, CHEN X H, LI T J, et al. Evaluating mesh quality with graph neural networks[J]. Engineering with Computers, 2022, 38(5): 4663-4673.
|
24 |
ALLIEGRO A, SIDDIQUI Y, TOMMASI T, et al. PolyDiff: Generating 3D polygonal meshes with diffusion models[DB/OL]. arXiv preprint: 2312.11417, 2023.
|
25 |
CROITORU F A, HONDRU V, IONESCU R T, et al. Diffusion models in vision: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(9): 10850-10869.
|
26 |
SIDDIQUI Y, ALLIEGRO A, ARTEMOV A, et al. MeshGPT: Generating triangle meshes with decoder-only transformers[DB/OL]. arXiv preprint: 2311.15475, 2023.
|
27 |
YUE H J, LI Z Y, XU K R, et al. Three-dimensional hyperbolic mesh generation method based on the neural network[J]. Applied Sciences, 2024, 14(24): 11931.
|
28 |
SONG W B, ZHANG M R, WALLWORK J G, et al. M2N: Mesh movement networks for PDE solvers[DB/OL]. arXiv preprint: 2204.11188, 2022.
|
29 |
DURKAN C, BEKASOV A, MURRAY I, et al. Neural spline flows[DB/OL]. arXiv preprint: 1906.04032, 2019.
|
30 |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[DB/OL]. arXiv preprint: 1710.10903, 2017.
|
31 |
ZHANG M R, WANG C Y, KRAMER S, et al. Towards universal mesh movement networks[DB/OL]. arXiv preprint: 2407.00382, 2024.
|
32 |
WIERING M, VAN OTTERLO M. Reinforcement learning: State-of-the-art: Issue 12[M]. Berlin, Heidelberg: Springer, 2012.
|
33 |
MARSCHNER S, SHIRLEY P. Fundamentals of Computer Graphics[J]. 4th ed. Boca Raton: A K Peters/CRC Press, 2018.
|
34 |
WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24.
|
35 |
DIKE H U, ZHOU Y, DEVEERASETTY K K, et al. Unsupervised learning based on artificial neural network: A review[C]∥2018 IEEE International Conference on Cyborg and Bionic Systems (CBS). Piscataway: IEEE Press, 2018: 322-327.
|
36 |
GORDON W J, RIESENFELD R F. B-spline curves and surfaces[M]∥Computer Aided Geometric Design. Amsterdam: Elsevier, 1974: 95-126.
|
37 |
RAMPÁŠEK L, GALKIN M, DWIVEDI V P, et al. Recipe for a general, powerful, scalable graph transformer[DB/OL]. arXiv preprint: 2205.12454, 2022.
|
38 |
SHI Y S, HUANG Z J, FENG S K, et al. Masked label prediction: unified message passing model for semi-supervised classification[DB/OL]. arXiv preprint: 2009.03509, 2020.
|
39 |
SORGENTE T, BIASOTTI S, MANZINI G, et al. A survey of indicators for mesh quality assessment[J]. Computer Graphics Forum, 2023, 42(2): 461-483.
|
40 |
DOZAT T. Incorporating nesterov momentum into adam[C]∥Proceedings of the 4th International Conference on Learning Representations (ICLR). 2016.
|