收稿日期:
2024-11-15
修回日期:
2025-01-04
接受日期:
2025-02-08
出版日期:
2025-02-24
发布日期:
2025-02-24
通讯作者:
乐挺
E-mail:yueting_buaa@163.com
Lixin WANG, Yilong NIU, Hailiang LIU, Jin WANG, Xianlong WANG, Ting YUE()
Received:
2024-11-15
Revised:
2025-01-04
Accepted:
2025-02-08
Online:
2025-02-24
Published:
2025-02-24
Contact:
Ting YUE
E-mail:yueting_buaa@163.com
摘要:
数字虚拟飞行仿真计算是一种基于“人-机-环”数学模型的一个完整飞行任务的仿真计算。在方案设计阶段,采用该方法能初步完成飞机飞行品质等级、适航符合性等评定,有效地解决在飞机研制后期若试验/试飞发现问题无法修改设计等问题。对于同一科目不同飞行状态或民机改型有关科目的适航审定等,可直接应用数字虚拟飞行仿真计算的结果,且该计算方法在民机适航审定中的应用日益广泛。较系统地介绍了飞机数字虚拟飞行仿真计算方法,特别是评估飞行任务及数字化与数字飞行员建模方法等,并给出了该方法在民机构型参数设计与使用条件确定、复杂场景的飞行性能精确计算、民机适航符合性评估、军机飞行品质评定和Ⅲ类非线性PIO预测等方面的应用示例。数字虚拟飞行仿真计算为飞机设计、适航取证或飞行品质评定等提供了一套实用的数学计算方法。
中图分类号:
王立新, 牛一龙, 刘海良, 王晋, 王显龙, 乐挺. 飞机数字虚拟飞行仿真计算方法及其应用[J]. 航空学报, 2025, 46(5): 531543.
Lixin WANG, Yilong NIU, Hailiang LIU, Jin WANG, Xianlong WANG, Ting YUE. Aircraft digital virtual flight simulation method and its application[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531543.
1 | 国防科学技术工业委员会. 有人驾驶飞机(固定翼)飞行品质: [S]. 北京: 国防科学技术工业委员会, 1986. |
National Defense Science, Technology and Industry Committee. Flying qualities of piloted airplanes(fixed wing): [S]. Beijing: National Defense Science, Technology and Industry Committee, 1986 (in Chinese). | |
2 | 中国民用航空局. 中国民用航空规章第25部运输类飞机适航标准:CCAR-24-R4 [S]. 北京: 中国民用航空局, 2011. |
Civil Aviation Administration of China. China civil aviationregulations part 25 airworthiness standards of transport category aircraft: CCAR-24-R4 [S]. Beijing: Civil Aviation Administration of China, 2011 (in Chinese). | |
3 | XU H J, LIU D L, XUE Y, et al. Airworthiness compliance verification method based on simulation of complex system[J]. Chinese Journal of Aeronautics, 2012, 25(5): 681-690. |
4 | SCHARL J, MAVRIS D, BURDUN I. Use of flight simulation in early design: Formulation and application of the virtual testing and evaluation methodology[C]∥2000 World Aviation Conference. Reston: AIAA, 2000. |
5 | BURDUN I, DELAURENTIS D, MAVRIS D. Modeling and simulation of airworthiness requirements for an HSCT prototype in early design[C]∥7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 1998. |
6 | BALTES E, SPITZ W. Virtual flight test as advanced step in aircraft development[C]∥AIAA’s Aircraft Technology, Integration, and Operations (ATIO) 2002 Technical Forum. Reston: AIAA, 2002. |
7 | LIU F, WANG L X, TAN X S. Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM[J]. Chinese Journal of Aeronautics, 2015, 28(1): 112-120. |
8 | WANG L X, YIN H P, YANG K, et al. Water takeoff performance calculation method for amphibious aircraft based on digital virtual flight[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3082-3091. |
9 | KROLL N, ABU-ZURAYK M, DIMITROV D, et al. DLR project digital-X: Towards virtual aircraft design and flight testing based on high-fidelity methods[J]. CEAS Aeronautical Journal, 2016, 7(1): 3-27. |
10 | SCHMOLLGRUBER P, BARTOLI N, GOURINAT Y. Virtual flight testing in an aircraft sizing and optimization process[C]∥15th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2015. |
11 | MAUERY T, ALONSO J, CARY A, et al. A guide for aircraft certification by analysis[R]. Hampton: Langley Research Center, 2021. |
12 | 刘海良, 王立新. 基于数字虚拟飞行的民用飞机纵向地面操稳特性评估[J]. 航空学报, 2015, 36(5): 1432-1441. |
LIU H L, WANG L X. Assessment of longitudinal ground stability and control for civil aircraft based on digital virtual flight testing method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1432-1441 (in Chinese). | |
13 | 涂章杰, 王立新, 陈俊平. 基于数字虚拟飞行的民机复飞爬升梯度评估[J]. 北京航空航天大学学报, 2017, 43(12): 2530-2538. |
TU Z J, WANG L X, CHEN J P. Assessment of go-around climb gradient for civil aircraft based on digital virtual flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2530-2538 (in Chinese). | |
14 | 刘海良, 王立新. 基于数字虚拟飞行的民机侧风着陆地面航向操稳特性评估[J]. 北京航空航天大学学报, 2018, 44(3): 516-525. |
LIU H L, WANG L X. Evaluation of directional ground stability and control characteristics in crosswind landing for civil airplane based on digital virtual flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 516-525 (in Chinese). | |
15 | 黄成涛, 王立新, 钟伯文. 高空风对大型客机航线性能的量化影响[J]. 北京航空航天大学学报, 2017, 43(7): 1348-1354. |
HUANG C T, WANG L X, ZHONG B W. Quantified effects of high-altitude wind on route performance of large passenger plane[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1348-1354 (in Chinese). | |
16 | 孟祥光, 王立新, 刘海良. 民机起飞爬升梯度适航符合性数学仿真评估[J]. 北京航空航天大学学报, 2016, 42(10): 2222-2230. |
MENG X G, WANG L X, LIU H L. Mathematical simulation and assessment of airworthiness compliance of climb gradient during takeoff of civil aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2222-2230 (in Chinese). | |
17 | 陈俊平, 王立新. 低能量状态对飞行安全的危害及改出方法[J]. 航空学报, 2017, 38(8): 121077. |
CHEN J P, WANG L X. Hazards of low energy state to flight safety and recovery methods[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8): 121077 (in Chinese). | |
18 | 贾重任, 黄成涛, 王立新. 空中最小操纵速度的人机闭环数学仿真计算[J]. 北京航空航天大学学报, 2013, 39(5): 580-584. |
JIA Z R, HUANG C T, WANG L X. Mathematical simulation method to calculate air minimum control speed[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5): 580-584 (in Chinese). | |
19 | WANG L X, YANG K, LIU H L, et al. Command governor for constrained attitude angle protection of the wing-in-ground effect craft near sea surface[J]. Journal of Aerospace Engineering, 2022, 35(6): 04022080. |
20 | WANG L X, ZHANG N, LIU H L, et al. Stability characteristics and airworthiness requirements of blended wing body aircraft with podded engines[J]. Chinese Journal of Aeronautics, 2022, 35(6): 77-86. |
21 | YANG K, WANG L X, YUE T, et al. Bank angle protection methods for a wing-in-ground craft[C]∥2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE). Piscataway: IEEE, 2019: 153-157. |
22 | LIU H L, WANG L X. Assessment of landing gear design based on the virtual testing and evaluation methodology[J]. Procedia Engineering, 2015, 99: 898-904. |
23 | HUANG C T, WANG L X, JIA Z R. A method to calculate the aircraft ground minimum control speed based on mathematical simulation[J]. Procedia Engineering, 2011, 17: 24-38. |
24 | 左宪帅, 王立新, 刘杰, 等. 基于缩比模型的全尺寸飞机纵向Ⅰ类PIO预测[J]. 北京航空航天大学学报, 2021, 47(11): 2297-2310. |
ZUO X S, WANG L X, LIU J, et al. Prediction of longitudinal category Ⅰ PIO of full-size aircraft based on scaled model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2297-2310 (in Chinese). | |
25 | WANG L X, LU C, LIU H L, et al. Method of predicting nonlinear pilot-induced oscillations due to flight control degradation based on digital virtual flight[J]. Aerospace Science and Technology, 2021, 116: 106871. |
26 | WANG L X, LU C, JIN T, et al. Suggestions for criteria to evaluate lateral-directional nonlinear pilot-induced oscillations due to fly-by-wire civil aircraft landing configuration switch[J]. Aerospace, 2023, 10(9): 799. |
27 | WANG J, ZHAO P, ZHANG Z, et al. Aircraft upset recovery strategy and pilot assistance system based on reinforcement learning[J]. Aerospace, 2024, 11(1): 70. |
28 | 周堃, 王立新, 谭详升. 放宽静稳定电传客机纵向短周期品质评定方法[J]. 航空学报, 2012, 33(9): 1606-1615. |
ZHOU K, WANG L X, TAN X S. Handling qualities assessment of short period mode for fly-by-wire passenger airliner with relaxed static stability design[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1606-1615 (in Chinese). | |
29 | WANG L X, ZHANG N, YUE T, et al. Three-axis coupled flight control law design for flying wing aircraft using eigenstructure assignment method[J]. Chinese Journal of Aeronautics, 2020, 33(10): 2510-2526. |
30 | LU C, WANG L X, YUE T, et al. Longitudinal flying qualities evaluation method for receiver in probe and drogue aerial refueling[C]∥2020 11th International Conference on Mechanical and Aerospace Engineering (ICMAE). Athens, Greece: IEEE, 2020: 87-92. |
31 | WANG L X, LU C, ZHAO P, et al. Pilot multi-axis control behavior modeling of receivers in probe-and-drogue aerial refueling[J]. Science China Technological Sciences, 2022, 65(1): 87-101. |
32 | WANG L X, YIN H P, GUO Y G, et al. Closed-loop motion characteristic requirements of receiver aircraft for probe and drogue aerial refueling[J]. Aerospace Science and Technology, 2019, 93: 105293. |
33 | YUE T, ZHANG Q, YIN H P, et al. Suggested closed-loop response characteristics for tanker in aerial refueling via mission-oriented evaluation[J]. Science China Technological Sciences, 2019, 62(3): 490-501. |
34 | 王立新, 田娇, 王晋, 等. 基于任务的军用飞机闭环动态特性要求[J]. 航空学报, 2022, 43(10): 527439. |
WANG L X, TIAN J, WANG J, et al. Closed-loop dynamic characteristics requirements of military aircrafts via mission-oriented evaluation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527439 (in Chinese). | |
35 | EFREMOV A V, RODCHENKO V V, BORIS S. Investigation of pilot induced oscillation tendency and prediction criteria development[J]. Air Force Dynamics Directorate, 1996: WL-TR-96-3109. |
36 | HEFFLEY R. Use of a task-pilot-vehicle (TPV) model as a tool for fight simulator math model development[C]∥AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2010. |
37 | HESS R A. A model-based theory for analyzing human control behavior[M]∥Advances in Man-Machine Systems Research. Greenwich: JAI Press Inc., 1985. |
38 | HESS R. Obtaining multi-loop pursuit-control pilot models from computer simulation[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
39 | HESS R, MARCHESI F. Pilot modeling with applications to the analytical assessment of flight simulator fidelity[C]∥AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston: AIAA, 2008. |
40 | HOSMAN R, STASSEN H. Pilot’s perception and control of aircraft motions[J]. IFAC Man-Machine Systems, 1998, 31(26): 311-316. |
41 | FERNANDEZ C, GOLDBERG J M. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system[J]. Journal of Neurophysiology, 1971, 34(4): 661-675. |
42 | MCRUER D T, JEX H R. A review of quasi-linear pilot models[J]. IEEE Transactions on Human Factors in Electronics, 1967 (3): 231-249. |
43 | HESS R. Pilot-centered handling qualities assessment for flight control design[C]∥AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2009. |
44 | ZAAL P, SWEET B. Estimation of time-varying pilot model parameters[C]∥AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2011. |
45 | 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005. |
FANG Z P, CHEN W C, ZHANG S G. Flight dynamics of aircraft[M]. Beijing: Beihang University Press, 2005 (in Chinese). | |
46 | MIL-F-8785C. Military specification flying qualities of piloted airplanes [S]. Washington D.C.: Department of Defense, 1980: 189-193. |
47 | LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767. |
48 | Federal Aviation Administration. Airplane flying handbook: FAA-H-8083-3A[M]. Washington D.C: Federal Aviation Administration, 2004: 8-33. |
49 | SMILEY R F, HORNE W B. Mechanical properties of pneumatic tires with special reference to modern aircraft tires: NASA TR-64[R]. Washington D.C.: NASA, 1960. |
50 | PI W, YAMANE J, SMITH M. Generic aircraft ground operation simulation[C]∥27th Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 1986. |
51 | BARNES A G, YAGER T J. Enhancement of aircraft ground handling simulation capability[R]. Hampton: AGARD, 1998. |
52 | CURREY N S. Aircraft landing gear design: Principles and practices[M]. Washington D.C.: AIAA, 1988. |
53 | 曹华姿.大型水陆两栖飞机水面起降飞行仿真与适航符合性研究[D].北京:北京航空航天大学, 2018: 99-151. |
CAO H Z. Flight simulation and airworthiness assessment for large amphibious aircraft during taking off and landing on water[D]. Beijing: Beihang University, 2018: 99-151 (in Chinese). | |
54 | 褚林塘. 水上飞机水动力设计[M]. 北京: 航空工业出版社, 2014: 10-19. |
CHU L T. Seaplane hydrodynamic design[M]. Beijing: Aviation Industry Press, 2014: 10-19 (in Chinese). | |
55 | ETKIN B, REID L D. Dynamics of flight: Stability and control[M]. 3rd ed. Hoboken: John Wiley & Sons, 1995. |
56 | AIRBUS. A319/A320/A321 Flight deck and systems briefing for pilots: STL 945.7136/97[Z]. AIRBUS, 1998. |
57 | Federal Aviation Administration. AC 25-7C Flight test guide for certification of transport category airplanes [S]. Washington D.C.: Federal Aviation Administration, 2012. |
58 | HESS R A. Simplified approach for modelling pilot pursuit control behaviour in multi-loop flight control tasks[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2006, 220(2): 85-102. |
59 | SMITH R H. A theory for handling qualities with applications to MIL-F-8785B[M]. Dayton, Ohio: Air Force Flight Dynamics Laboratory, 1976. |
60 | NGUYEN L T. OGBURN M E, GILBERT W P. Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability[M]. Washington D.C.: NASA, 1979. |
61 | VASSBERG J, YEH D, BLAIR A, et al. Numerical simulations of KC-10 wing-mount aerial refueling hose-drogue dynamics with a reel take-up system[C]∥21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003. |
62 | LEITNER R M, ESTRUGO R. Numeric simulation of aerial refueling coupling dynamics in case of hose reel malfunction[C]∥AIAA Modeling and Simulation Technologies (MST) Conference. Reston: AIAA, 2013. |
63 | WU L, SUN Y R, HUANG B, et al. Dynamic modeling and performance analysis of a hose-drogue aerial refueling system based on the Kane equation[C]∥2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). Piscataway: IEEE Press, 2016: 759-764. |
64 | RUI X T, HE B, LU Y Q, et al. Discrete time transfer matrix method for multibody system dynamics[J]. Multibody System Dynamics, 2005, 14(3): 317-344. |
65 | YU Z Q, QU Y H, ZHANG Y M. Safe control of trailing UAV in close formation flight against actuator fault and wake vortex effect[J]. Aerospace Science and Technology, 2018, 77: 189-205. |
66 | DOGAN A, BLAKE W, HAAG C. Bow wave effect in aerial refueling: Computational analysis and modeling[J]. Journal of Aircraft, 2013, 50(6): 1856-1868. |
67 | DAI X H, WEI Z B, QUAN Q. Modeling and simulation of bow wave effect in probe and drogue aerial refueling[J]. Chinese Journal of Aeronautics, 2016, 29(2): 448-461. |
68 | SHAFER M F, STEINMETZ P. Pilot-induced oscillation research: Status at the end of the century[R]. Edwards: NASA Dryden Flight Research Center, 2001. |
69 | FIELD E, VON KLEIN W, VAN DER WEERD R, et al. The prediction and suppression of PIO susceptibility of a large transport aircraft[C]∥Atmospheric Flight Mechanics Conference. Reston: AIAA, 2000. |
70 | 陆畅. 非线性人机耦合特性预测与安全辅助驾驶技术研究[D]. 北京: 北京航空航天大学, 2022:54-56 |
LU C. Prediction of nonlinear pilot-induced oscillation characteristics and study on safety assisted piloting technology[D]. Beijing: Beihang University, 2022: 54-56 (in Chinese). |
[1] | 台尚 吴昊泽 胡延国 黄开 乐挺 刘海良 王立新. 超声速飞机缩比模型飞行控制律参数相似设计准则研究[J]. 航空学报, 0, (): 1-0. |
[2] | 许鑫泽 洪冠新 杜亮 刘刚. 复杂环境下舰载机人工进近着舰模型研究[J]. 航空学报, 0, (): 1-0. |
[3] | 王冶平 吉洪蕾 康清宇 邓皓轩 王畅. 集成多旋翼气动干扰的UAM飞行动力学模型[J]. 航空学报, 0, (): 1-0. |
[4] | 文镜涵 吉洪蕾 邓皓轩 王畅. 适用于飞行力学分析的旋翼涡环状态入流模型[J]. 航空学报, 0, (): 1-0. |
[5] | 朱恩桐 周洲 王睿 王涵 王贵晨. 翼尖铰接组合式飞行器多飞行构型下协调机动操纵性分析[J]. 航空学报, 0, (): 1-0. |
[6] | 王冶平, 吉洪蕾, 周攀, 叶毅. 基于涡管模型的倾转四旋翼气动干扰快速分析[J]. 航空学报, 2025, 46(2): 130705-130705. |
[7] | 毛昆 荆武兴 陈石 刘军 吴大卫 司江涛. 大型客机刚弹耦合分析技术的研究及验证[J]. 航空学报, 0, (): 1-0. |
[8] | 周攀, 陈仁良, 杨柠檬, 聂博文, 李国强. 倾转四旋翼飞行器操纵策略[J]. 航空学报, 2024, 45(22): 130165-130165. |
[9] | 杨芃芊 陈禹彤 刘俊辉 杨杰豪 单家元. 串列翼货运无人机大攻角气动与操稳特性研究[J]. 航空学报, 0, (): 0-0. |
[10] | 崔壮壮, 原昕, 赵国庆, 井思梦, 招启军. 共轴刚性旋翼高速直升机前飞性能操纵策略影响[J]. 航空学报, 2024, 45(9): 529256-529256. |
[11] | 刘昌昊, 曹义华, 梅晓萌, 汪茂胜, 张广林. 高速直升机运输效能评估[J]. 航空学报, 2024, 45(9): 530182-530182. |
[12] | 朱喆, 黄江涛, 章胜, 李飞, 杜昕, 单恩光, 唐骥罡, 王春阳. 动量环式主动增稳加油锥套建模与飘摆抑制[J]. 航空学报, 2024, 45(7): 128882-128882. |
[13] | 周洪淼, 于剑桥, 于勇. 敏捷转弯伞弹系统动力学建模与分岔特性分析[J]. 航空学报, 2024, 45(7): 229012-229012. |
[14] | 王洛烽, 陈仁良. 吊挂飞行对重型直升机空中共振稳定性的影响机理分析[J]. 航空学报, 2023, 44(16): 227983-227983. |
[15] | 周洪淼 于剑桥 于勇. 敏捷转弯伞弹系统动力学建模与分岔特性分析[J]. 航空学报, 0, (): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学