航空学报 > 2025, Vol. 46 Issue (11): 531477-531477   doi: 10.7527/S1000-6893.2024.31477

城市低空立体物流网络双种群协同优化方法

张春晓1,2, 郭通1,2, 李宇萌1,2()   

  1. 1.北京航空航天大学 电子信息工程学院,北京 100191
    2.空地一体新航行系统技术全国重点实验室,北京 100191
  • 收稿日期:2024-10-31 修回日期:2024-12-09 接受日期:2025-03-03 出版日期:2025-03-13 发布日期:2025-03-12
  • 通讯作者: 李宇萌 E-mail:liyumeng@buaa.edu.cn
  • 基金资助:
    北航科研项目基金(23100002022102001);国家自然科学基金(U2333218);国家自然科学基金(52302398);国家自然科学基金(61827901);北京市自然科学基金(L241036)

Dual-population coevolutionary optimization for multi-layer urban air logistics network

Chunxiao ZHANG1,2, Tong GUO1,2, Yumeng LI1,2()   

  1. 1.School of Electronic and Information Engineering,Beihang University,Beijing 100191,China
    2.State Key Laboratory of CNS/ATM,Beijing 100191,China
  • Received:2024-10-31 Revised:2024-12-09 Accepted:2025-03-03 Online:2025-03-13 Published:2025-03-12
  • Contact: Yumeng LI E-mail:liyumeng@buaa.edu.cn
  • Supported by:
    Beihang Research Project(23100002022102001);National Natural Science Foundation of China(U2333218);Beijing Natural Science Foundation(L241036)

摘要:

城市无人机(UAV)物流是低空经济落地应用的重要场景,城市低空物流(UAL)网络是其关键基础设施。综合考虑噪声约束、经济成本和对地安全风险等因素,开展了城市低空物流网络优化方法研究。在噪声约束下,以最小化经济成本和对地安全风险为优化目标,建立了多目标混合整数规划模型,提出了一种双种群协同进化优化求解算法,通过种群间的个体交互实现知识迁移,有效提升了算法在不规则解空间中的寻优能力。实验表明,本方法与现有方法相比,寻优性能平均提高20%以上,所设计的多高度层立体网络达到了成本、对地安全风险、噪声的均衡最优。

关键词: 城市低空物流, 网络规划, 对地安全风险, 无人机噪声, 多目标优化, 协同进化

Abstract:

Urban Unmanned Aerial Vehicle (UAV) logistics is a significant application for the low-altitude economy, and the Urban Air Logistics (UAL) network is a critical infrastructure for achieving efficient drone delivery. This paper comprehensively considers critical urban factors such as noise constraints, economic costs, and ground safety risks to investigate optimization methodologies for urban air logistics networks. We propose a novel multiobjective mixed-integer programming model that simultaneously minimizes operational costs and ground safety risks while strictly under noise constraints. A dual-population coevolutionary optimization algorithm is developed, which enables knowledge transfer through individual interactions between populations, effectively enhancing the optimization capability of the algorithm in irregular solution spaces. Computational experiments show that the proposed algorithm outperforms existing methods with performance improving by over 20% on average. The designed multi-layered network achieves a balanced optimum in terms of cost, ground safety risk, and noise.

Key words: urban air logistics, network design, ground safety risk, UAV noise, multiobjective optimization, coevolutionary

中图分类号: