收稿日期:2024-10-31
修回日期:2024-12-09
接受日期:2025-03-03
出版日期:2025-03-13
发布日期:2025-03-12
通讯作者:
李宇萌
E-mail:liyumeng@buaa.edu.cn
基金资助:
Chunxiao ZHANG1,2, Tong GUO1,2, Yumeng LI1,2(
)
Received:2024-10-31
Revised:2024-12-09
Accepted:2025-03-03
Online:2025-03-13
Published:2025-03-12
Contact:
Yumeng LI
E-mail:liyumeng@buaa.edu.cn
Supported by:摘要:
城市无人机(UAV)物流是低空经济落地应用的重要场景,城市低空物流(UAL)网络是其关键基础设施。综合考虑噪声约束、经济成本和对地安全风险等因素,开展了城市低空物流网络优化方法研究。在噪声约束下,以最小化经济成本和对地安全风险为优化目标,建立了多目标混合整数规划模型,提出了一种双种群协同进化优化求解算法,通过种群间的个体交互实现知识迁移,有效提升了算法在不规则解空间中的寻优能力。实验表明,本方法与现有方法相比,寻优性能平均提高20%以上,所设计的多高度层立体网络达到了成本、对地安全风险、噪声的均衡最优。
中图分类号:
张春晓, 郭通, 李宇萌. 城市低空立体物流网络双种群协同优化方法[J]. 航空学报, 2025, 46(11): 531477.
Chunxiao ZHANG, Tong GUO, Yumeng LI. Dual-population coevolutionary optimization for multi-layer urban air logistics network[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 531477.
表 5
不同算法的HV指标对比
| 节点 | 指标 | CCMO-AOS | SSLAM-P | SSLM-P | MSwap-P |
|---|---|---|---|---|---|
| 10 | 平均值 | 0.921 1 | 0.751 5 | 0.555 4 | 0.408 9 |
| 标准差 | 0.016 5 | 0.016 1 | 0.279 0 | 0.334 0 | |
| 20 | 平均值 | 1.119 0 | 0.895 8 | 0.826 8 | 0.859 1 |
| 标准差 | 0.025 9 | 0.030 1 | 0.010 3 | 0.014 9 | |
| 25 | 平均值 | 1.094 2 | 0.934 3 | 0.898 7 | 0.933 1 |
| 标准差 | 0.014 7 | 0.028 1 | 0.021 3 | 0.016 2 | |
| 30 | 平均值 | 1.145 8 | 0.960 1 | 0.886 2 | 0.936 4 |
| 标准差 | 0.028 7 | 0.041 5 | 0.014 8 | 0.040 9 | |
| 40 | 平均值 | 1.151 3 | 1.001 4 | 0.932 3 | 0.955 9 |
| 标准差 | 0.019 3 | 0.053 1 | 0.029 7 | 0.019 4 |
表 6
不同算法的IGD指标对比
| 节点 | 指标 | CCMO-AOS | SSLAM-P | SSLM-P | MSwap-P |
|---|---|---|---|---|---|
| 10 | 平均值 | 0.020 3 | 0.179 8 | 0.344 8 | 0.516 9 |
| 标准差 | 0.027 4 | 0.033 4 | 0.336 9 | 0.408 6 | |
| 20 | 平均值 | 0.031 8 | 0.203 0 | 0.235 2 | 0.213 9 |
| 标准差 | 0.014 9 | 0.011 5 | 0.003 6 | 0.018 3 | |
| 25 | 平均值 | 0.028 4 | 0.133 0 | 0.164 1 | 0.139 4 |
| 标准差 | 0.012 3 | 0.016 3 | 0.015 1 | 0.011 1 | |
| 30 | 平均值 | 0.025 3 | 0.184 7 | 0.238 9 | 0.208 8 |
| 标准差 | 0.023 7 | 0.029 1 | 0.010 9 | 0.029 9 | |
| 40 | 平均值 | 0.028 5 | 0.114 8 | 0.163 1 | 0.146 1 |
| 标准差 | 0.010 0 | 0.039 9 | 0.024 6 | 0.011 1 |
表 7
消融实验:算法的HV指标对比
| 节点 | 指标 | CCMO-AOS | CCMO-MN | CCMO-SN | AOS-P |
|---|---|---|---|---|---|
| 10 | 平均值 | 0.930 9 | 0.928 8 | 0.930 3 | 0.783 1 |
| 标准差 | 0.017 3 | 0.022 2 | 0.020 4 | 0.000 4 | |
| 20 | 平均值 | 1.109 6 | 1.096 9 | 1.068 0 | 0.916 0 |
| 标准差 | 0.026 1 | 0.023 3 | 0.018 9 | 0.015 0 | |
| 25 | 平均值 | 1.071 6 | 1.079 2 | 1.074 1 | 1.005 0 |
| 标准差 | 0.014 9 | 0.026 9 | 0.006 0 | 0.014 5 | |
| 30 | 平均值 | 1.091 3 | 1.104 2 | 1.048 6 | 1.002 1 |
| 标准差 | 0.036 4 | 0.039 8 | 0.068 0 | 0.074 8 | |
| 40 | 平均值 | 1.139 2 | 1.104 6 | 1.070 8 | 1.082 6 |
| 标准差 | 0.021 6 | 0.030 8 | 0.034 4 | 0.030 2 |
表 8
不同问题的解对比
| 解 | 节点 | |||||
|---|---|---|---|---|---|---|
| 10 | 20 | 25 | 30 | 40 | ||
| 成本最小 | 成本/107 | 6.340 7 | 4.543 8 | 3.921 4 | 3.233 3 | 2.997 1 |
| 风险/104 | 4.788 0 | 4.163 4 | 5.042 6 | 4.584 6 | 5.475 6 | |
| 5 | 7 | 8 | 7 | 9 | ||
| 4 | 6 | 7 | 6 | 9 | ||
| 5 | 13 | 17 | 23 | 32 | ||
| 风险最小 | 成本/107 | 10.327 | 7.257 3 | 9.888 4 | 5.218 5 | 10.360 |
| 风险/104 | 2.984 4 | 3.153 7 | 2.700 5 | 2.819 2 | 2.632 2 | |
| 9 | 11 | 17 | 11 | 22 | ||
| 10 | 12 | 25 | 13 | 66 | ||
| 2 | 13 | 15 | 29 | 43 | ||
| 距离最小 | 成本/107 | 7.386 2 | 6.863 4 | 6.422 9 | 3.765 3 | 9.001 5 |
| 风险/104 | 3.633 0 | 3.189 0 | 3.126 8 | 3.813 6 | 2.645 6 | |
| 6 | 10 | 13 | 8 | 20 | ||
| 5 | 10 | 17 | 7 | 46 | ||
| 4 | 16 | 22 | 28 | 49 | ||
| [1] | DU W B, GUO T, CHEN J, et al. Cooperative pursuit of unauthorized UAVs in urban airspace via Multi-agent reinforcement learning[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103122. |
| [2] | XING J H, SU L C, HONG W J, et al. Aerial-ground collaborative routing with time constraints[J]. Chinese Journal of Aeronautics, 2023, 36(2): 270-283. |
| [3] | GARROW L A, GERMAN B J, LEONARD C E. Urban air mobility: A comprehensive review and comparative analysis with autonomous and electric ground transportation for informing future research[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103377. |
| [4] | RIFAN R, ADIKARIWATTAGE V, DE BARROS A. Identification of urban air logistics distribution network concepts[J]. Transportation Research Record: Journal of the Transportation Research Board, 2023, 2677(2): 129-153. |
| [5] | KELLERMANN R, BIEHLE T, FISCHER L. Drones for parcel and passenger transportation: A literature review[J]. Transportation Research Interdisciplinary Perspectives, 2020, 4: 100088. |
| [6] | HOU W J, FANG T, PEI Z, et al. Integrated design of unmanned aerial mobility network: A data-driven risk-averse approach[J]. International Journal of Production Economics, 2021, 236: 108131. |
| [7] | FARAZI N P, ZOU B. Planning electric vertical takeoff and landing aircraft (eVTOL)-based package delivery with community noise impact considerations[J]. Transportation Research Part E: Logistics and Transportation Review, 2024, 189: 103661. |
| [8] | PARK Y, LEE S, SUNG I, et al. Facility location-allocation problem for emergency medical service with unmanned aerial vehicle[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(2): 1465-1479. |
| [9] | ZHU T K, BOYLES S D, UNNIKRISHNAN A. Two-stage robust facility location problem with drones[J]. Transportation Research Part C: Emerging Technologies, 2022, 137: 103563. |
| [10] | 任新惠, 王柳, 王佳雪. 基于分区优化的无人机全自动机场选址研究[J]. 运筹与管理, 2023, 32(6): 20-26. |
| REN X H, WANG L, WANG J X. Automatic vertiport location of unmanned aerial vehicle based on partition optimization[J]. Operations Research and Management Science, 2023, 32(6): 20-26 (in Chinese). | |
| [11] | ZHANG C X, DU W B, GUO T, et al. Multi-objective hub location for urban air mobility via self-adaptive evolutionary algorithm[J]. Advanced Engineering Informatics, 2025, 64: 102974. |
| [12] | SUN X T, LI X H. A drone-driven delivery network design for an on-demand O2O platform considering hazard risks and customer heterogeneity[J]. Asia-Pacific Journal of Operational Research, 2024, 41(4): 2440004. |
| [13] | Bulusu V, Polishchuk V, Sedov L. Noise Estimation for future large-scale small UAS Operations[C]∥INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Wakefield: Institute of Noise Control Engineering, 2017, 254(2): 864-871. |
| [14] | SCHÄFFER B, PIEREN R, HEUTSCHI K, et al. Drone noise emission characteristics and noise effects on humans-a systematic review[J]. International Journal of Environmental Research and Public Health, 2021, 18(11): 5940. |
| [15] | TORIJA A J, LI Z G, SELF R H. Effects of a hovering unmanned aerial vehicle on urban soundscapes perception[J]. Transportation Research Part D: Transport and Environment, 2020, 78: 102195. |
| [16] | EASA N N. Study on the societal acceptance of urban air mobility in Europe[J]. 2021. |
| [17] | HADDAD C AL, CHANIOTAKIS E, STRAUBINGER A, et al. Factors affecting the adoption and use of urban air mobility[J]. Transportation Research Part A: Policy and Practice, 2020, 132: 696-712. |
| [18] | TAN Q C, HOU J F, LI Y H, et al. Exploring noise reduction strategies: Optimizing drone station placement for last-mile delivery[J]. Transportation Research Part D: Transport and Environment, 2024, 133: 104306. |
| [19] | TAN Q C, BIAN H Y, GUO J W, et al. Virtual flight simulation of delivery drone noise in the urban residential community[J]. Transportation Research Part D: Transport and Environment, 2023, 118: 103686. |
| [20] | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
| [21] | 张洪海, 邹依原, 张启钱, 等. 未来城市空中交通管理研究综述[J]. 航空学报, 2021, 42(7): 024638. |
| ZHANG H H, ZOU Y Y, ZHANG Q Q, et al. Future urban air mobility management: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 024638 (in Chinese). | |
| [22] | COHEN A P, SHAHEEN S A, FARRAR E M. Urban air mobility: History, ecosystem, market potential, and challenges[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9): 6074-6087. |
| [23] | 曲欣宇, 叶博嘉, 程予, 等. 物流无人机城市低空轴辐式网络构建方法研究[J]. 山东科学, 2023, 36(6): 86-95. |
| QU X Y, YE B J, CHENG Y, et al. The method to construct an urban logistics unmanned aerial vehicles low-altitude hub-and-spoke network[J]. Shandong Science, 2023, 36(6): 86-95 (in Chinese). | |
| [24] | KARIMI H, SETAK M. Proprietor and customer costs in the incomplete hub location-routing network topology[J]. Applied Mathematical Modelling, 2014, 38(3): 1011-1023. |
| [25] | PANG B Z, HU X T, DAI W, et al. UAV path optimization with an integrated cost assessment model considering third-party risks in metropolitan environments[J]. Reliability Engineering & System Safety, 2022, 222: 108399. |
| [26] | CHEN K S, LUO W J, LIN X, et al. Evolutionary biparty multiobjective UAV path planning: Problems and empirical comparisons[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(3): 2433-2445. |
| [27] | JIANG C P, BLOM H A, SHARPANSKYKH A. Third party risk indicators and their use in safety regulations for UAS operations: AIAA-2020-2901[R]. Reston: AIAA, 2020. |
| [28] | PRIMATESTA S, GUGLIERI G, RIZZO A. A risk-aware path planning strategy for UAVs in urban environments[J]. Journal of Intelligent & Robotic Systems, 2019, 95(2): 629-643. |
| [29] | ALEXANDER W N, WHELCHEL J, INTARATEP N, et al. Predicting community noise of sUAS: AIAA-2019-2686[R]. Reston: AIAA, 2019. |
| [30] | GAO Z Y, YU Y, WEI Q S, et al. Noise-aware and equitable urban air traffic management: An optimization approach[DB/OL]. arXiv preprint: 2401.00806; 2024. |
| [31] | TIAN Y, ZHANG T, XIAO J H, et al. A coevolutionary framework for constrained multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(1): 102-116. |
| [32] | ZITZLER E. SPEA2: Improving the strength pareto evolutionary algorithm: ethz-a-004284029[R]. Zurich: ETH Zurich, 2001. |
| [33] | DEMIR İ, KIRAZ B, CORUT ERGIN F. Experimental evaluation of meta-heuristics for multi-objective capacitated multiple allocation hub location problem[J]. Engineering Science and Technology, an International Journal, 2022, 29: 101032. |
| [34] | GUIZZO G, FRITSCHE G M, VERGILIO S R, et al. A hyper-heuristic for the multi-objective integration and test order problem[C]∥ Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2015: 1343-1350. |
| [35] | LI A, HANSEN M, ZOU B. Traffic management and resource allocation for UAV-based parcel delivery in low-altitude urban space[J]. Transportation Research Part C: Emerging Technologies, 2022, 143: 103808. |
| [36] | 成都市邮政管理局. 2019年成都市邮政行业发展统计公报[EB/OL]. (2020-5-29)[2024-10-31]. . |
| Chengdu Municipal Postal Administration. 2019 Chengdu postal industry development statistical bulletin[EB/OL]. (2020-5-29)[2024-10-31]. (in Chinese). | |
| [37] | CHIANG W C, LI Y Y, SHANG J, et al. Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization[J]. Applied Energy, 2019, 242: 1164-1175. |
| [38] | ERNST A T, KRISHNAMOORTHY M. Efficient algorithms for the uncapacitated single allocation p-hub Median problem[J]. Location Science, 1996, 4(3): 139-154. |
| [39] | D’SOUZA S, ISHIHARA A, NIKAIDO B, et al. Feasibility of varying geo-fence around an unmanned aircraft operation based on vehicle performance and wind[C]∥ 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2016: 1-10. |
| [40] | 中华人民共和国生态环境部. 机场周围航空噪声监测技术规范(征求意见稿)[EB/OL]. (2024-4-12) [2024-10-31]. . |
| Ministry of Ecology and Environment of the People’s Republic of China. Technical specifications for monitoring of aircraft noise in the vicinity of airports (Exposure draft)[EB/OL]. (2024-4-12) [2024-10-31]. (in Chinese). | |
| [41] | 中华人民共和国环境保护部. 《机场周围区域飞机噪声环境质量标准(二次征求意见稿)》编制说明[EB/OL]. (2017-11-17)[2024-10-31]. . |
| Ministry of Environmental Protection. Preparation Instructions for the “Environmental quality standard for airplane noise in the vicinity of airports (Second draft for comment)”[EB/OL]. (2017-11-17)[2024-10-31]. (in Chinese). | |
| [42] | MRABTI N, HAMANI N, BOULAKSIL Y, et al. A multi-objective optimization model for the problems of sustainable collaborative hub location and cost sharing[J]. Transportation Research Part E: Logistics and Transportation Review, 2022, 164: 102821. |
| [43] | YANG X, BOSTEL N, DEJAX P. A MILP model and memetic algorithm for the Hub Location and Routing problem with distinct collection and delivery Tours[J]. Computers & Industrial Engineering, 2019, 135: 105-119. |
| [44] | ZHALECHIAN M, TAVAKKOLI-MOGHADDAM R, RAHIMI Y, et al. An interactive possibilistic programming approach for a multi-objective hub location problem: Economic and environmental design[J]. Applied Soft Computing, 2017, 52: 699-713. |
| [1] | 李荣祖, 刘莉, 杨盾. 基于多源域融合代理模型的氢能无人机优化设计[J]. 航空学报, 2025, 46(9): 630979-630979. |
| [2] | 蔡伟伟, 伍国华, 李恒伟, 尹谦. 考虑用户偏好的中继卫星多目标调度优化方法[J]. 航空学报, 2025, 46(8): 331074-331074. |
| [3] | 王一帆, 郭喜云, 贾世元, 陈钢, 任默. 面向桁架抓持的三分支机器人构型优化方法[J]. 航空学报, 2025, 46(7): 431033-431033. |
| [4] | 崔瑀欣, 陆中, 周伽. 基于多目标人工蜂鸟算法的研制保证等级分配[J]. 航空学报, 2025, 46(4): 330946-330946. |
| [5] | 单程军, 贡天宇, 易理哲, 杨浩辉, 龙垚松. 超声速民机高效高可信度声爆/气动多学科优化方法[J]. 航空学报, 2024, 45(24): 630573-630573. |
| [6] | 李恒伟, 罗启章, 顾轶, 范才智, 伍国华. 基于滚动时域策略的中继卫星多目标动态调度优化方法[J]. 航空学报, 2024, 45(16): 329706-329706. |
| [7] | 杨倩, 郑皓冉, 程显达, 董威. 基于引气控制的热气防冰优化设计方法[J]. 航空学报, 2023, 44(S2): 729285-729285. |
| [8] | 董杰忠, 楚武利, 张皓光, 罗波, 晏松. 基于因果网络分析的扩压叶栅波浪形前缘控制机理[J]. 航空学报, 2023, 44(19): 128336-128336. |
| [9] | 毕文豪, 周久力, 段晓波, 张安, 徐双飞. 基于多要素改进NSGA-Ⅱ的小直径制导炸弹空面打击最优火力分配方法[J]. 航空学报, 2023, 44(17): 328116-328116. |
| [10] | 梁超, 杨力, 潘成胜, 戚耀文. 卫星网络动态资源图多QoS约束路由算法[J]. 航空学报, 2023, 44(1): 326422-326422. |
| [11] | 邹子缘, 陈琪锋. 基于决策树搜索的空间飞行器集群对抗目标分配方法[J]. 航空学报, 2022, 43(S1): 726910-726910. |
| [12] | 孙刚, 彭双, 陈浩, 伍江江, 李军. 面向测控数传资源一体化场景的卫星地面站资源多目标优化方法[J]. 航空学报, 2022, 43(9): 326114-326114. |
| [13] | 郑帅, 王子涵, 赵浩然, 杨朋涛, 洪军. 基于差分进化算法的飞机油量传感器布局优化方法[J]. 航空学报, 2022, 43(8): 125809-125809. |
| [14] | 荆涛, 田锡天. 基于蒙特卡洛-自适应差分进化算法的飞机容差分配多目标优化方法[J]. 航空学报, 2022, 43(3): 425278-425278. |
| [15] | 罗庆, 张涛, 单鹏, 张文涛, 刘子豪. 基于改进Q学习的IMA系统重构蓝图生成方法[J]. 航空学报, 2021, 42(8): 525792-525792. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学

