[1] |
ZOU Y Y, ZHANG H H, ZHONG G, et al. Collision probability estimation for small unmanned aircraft systems[J]. Reliability Engineering & System Safety, 2021, 213: 107619.
|
[2] |
ZHONG G, DU S, ZHANG H H, et al. Demarcation method of safety separations for sUAV based on collision risk estimation[J]. Reliability Engineering & System Safety, 2024, 242: 109738.
|
[3] |
XUE M, KUO V, DE ALVEAR CARDENAS J I, et al. A method of compliance for achieving target collision risk in UTM operations: AIAA-2024-4457[R]. Reston: AIAA, 2024.
|
[4] |
郭悦翔, 司海强, 刘鸿仪, 等. 基于Event模型的无人机垂直碰撞风险研究[J]. 现代信息科技, 2022, 6(20): 152-154, 158.
|
|
GUO Y X, SI H Q, LIU H Y, et al. Research on UAV vertical collision risk based on event model[J]. Modern Information Technology, 2022, 6(20): 152-154, 158 (in Chinese).
|
[5] |
岳睿媛, 苏彬, 朱新平, 等. 基于改进Event模型的航路飞行过程垂直碰撞风险研究[J]. 航空工程进展, 2022, 13(1): 129-134.
|
|
YUE R Y, SU B, ZHU X P, et al. Research on vertical collision risk of air route flight based on improved event model[J]. Advances in Aeronautical Science and Engineering, 2022, 13(1): 129-134 (in Chinese).
|
[6] |
JOHN WANG C H, TAN S K, LOW K H. Three-dimensional (3D) Monte-Carlo modeling for UAS collision risk management in restricted airport airspace[J]. Aerospace Science and Technology, 2020, 105: 105964.
|
[7] |
FITRIKANANDA B P, JENIE Y I, SASONGKO R A, et al. Risk assessment method for UAV’s sense and avoid system based on multi-parameter quantification and Monte Carlo simulation[J]. Aerospace, 2023, 10(9): 781.
|
[8] |
BANERJEE P, GOROSPE G, ANCEL E. 3D representation of UAV-obstacle collision risk under off-nominal conditions[C]∥2021 IEEE Aerospace Conference (50100). Piscataway: IEEE Press, 2021: 1-7.
|
[9] |
童亮, 甘旭升, 张宏宏, 等. 考虑多因素影响的无人机碰撞风险评估[J]. 兵器装备工程学报, 2023, 44(4): 282-289.
|
|
TONG L, GAN X S, ZHANG H H, et al. Risk assessment of UAV collision considering multiple factors[J]. Journal of Ordnance Equipment Engineering, 2023, 44(4): 282-289 (in Chinese).
|
[10] |
韩鹏, 赵嶷飞. 基于飞行环境建模的UAV地面撞击风险研究[J]. 中国安全科学学报, 2020, 30(1): 142-147.
|
|
HAN P, ZHAO Y F. Study on ground impact risk of UAV based on flight environment[J]. China Safety Science Journal, 2020, 30(1): 142-147 (in Chinese).
|
[11] |
NOH S, SHORTLE J. Dynamic event tree framework to assess collision risk between various aircraft types[C]∥2020 Integrated Communications Navigation and Surveillance Conference (ICNS). Piscataway: IEEE Press, 2020: 2F1-1-2F1-13.
|
[12] |
KIM J, NAM G, MIN D C, et al. Safety risk assessment based minimum separation boundary for UAM operations[C]∥2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2023.
|
[13] |
GIGANTE G, BERNARD M, PALUMBO R, et al. Current approaches in UAV operational risk assessment and practical considerations[J]. Journal of Physics: Conference Series, 2024, 2716(1): 012055.
|
[14] |
HAN P, YANG X Y, ZHAO Y F, et al. Quantitative ground risk assessment for urban logistical unmanned aerial vehicle (UAV) based on Bayesian network[J]. Sustainability, 2022, 14(9): 5733.
|
[15] |
ZHANG H H, GAN X S, LIU Y, et al. Risk assessment framework for low-altitude UAV traffic management[J]. Journal of Intelligent & Fuzzy Systems, 2022, 42(3): 2775-2792.
|
[16] |
SUN X T, HU Y, QIN Y C, et al. Risk assessment of unmanned aerial vehicle accidents based on data-driven Bayesian networks[J]. Reliability Engineering & System Safety, 2024, 248: 110185.
|
[17] |
李航, 聂芳艺. 基于贝叶斯网络的物流无人机碰撞风险评估[J]. 科学技术与工程, 2023, 23(15): 6700-6706.
|
|
LI H, NIE F Y. Collision risk assessment of logistics UAV based on Bayesian network[J]. Science Technology and Engineering, 2023, 23(15): 6700-6706 (in Chinese).
|
[18] |
International Civil Aviation Organization. Manual on monitoring the application of performance-based horizontal separation minima: Doc 10063 [S]. Montreal: ICAO, 2017: 65-81.
|
[19] |
International Civil Aviation Organization. A unified framework for collision risk modelling in support of the manual on airspace planning methodology for the determination of separation minima (Doc 9689): Cir 319 AN/181 [S]. Montreal: ICAO, 2009: 17-43.
|
[20] |
MCFADYEN A, MARTIN T. Understanding vertical collision risk and navigation performance for unmanned aircraft[C]∥2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2018.
|
[21] |
WANG L, ZHAO M, HAO W, et al. Collision risk sssessment between manned aircraft and uavs in multitype operational scenarios based on space-time overlap[J]. Available at SSRN 4836037.
|
[22] |
KALLINEN V, MCFADYEN A. Collision risk modeling and analysis for lateral separation to support unmanned traffic management[J]. Risk Analysis, 2022, 42(4): 854-881.
|
[23] |
韩鹏, 周斌, 张恩宇. 终端区多场景有人机/无人机空中碰撞风险研究[J]. 西华大学学报(自然科学版), 2022, 41(2): 8-11, 50.
|
|
HAN P, ZHOU B, ZHANG E Y. Air collision risk of manned drones in multiple scenarios in the terminal area[J]. Journal of Xihua University (Natural Science Edition), 2022, 41(2): 8-11, 50 (in Chinese).
|
[24] |
潘卫军, 陈佳炀, 张智巍, 等. 管制空域内无人机与有人机侧向碰撞风险研究[J]. 计算机与现代化, 2020(3): 1-5.
|
|
PAN W J, CHEN J Y, ZHANG Z W, et al. Lateral collision risk evaluation between unmanned aerial vehicle and manned aircraft in controlled airspace[J]. Computer and Modernization, 2020(3): 1-5 (in Chinese).
|
[25] |
LIN X, FULTON N, WESTCOTT M. Target level of safety measures in air transportation-Review, validation and recommendations[C]∥Proceedings Of The IASTED International Conference. Beijing: ACTA Press, 2009.
|