1 |
NEIGAPULA S N V, MADDULA S P, NUKALA V B. A study of high lift aerodynamic devices on commercial aircrafts[J]. Aviation, 2020, 24(3): 123-136.
|
2 |
WAN Q, LIU G, SONG C Y, et al. Study on the dynamic interaction of multiple clearance joints for flap actuation system with a modified contact force model[J]. Journal of Mechanical Science and Technology, 2020, 34(7): 2701-2713.
|
3 |
史佑民, 杨新团. 大型飞机高升力系统的发展及关键技术分析[J]. 航空制造技术, 2016, 59(10): 74-78.
|
|
SHI Y M, YANG X T. Development and critical technology analysis for high lift system of large aircraft[J]. Aeronautical Manufacturing Technology, 2016, 59(10): 74-78 (in Chinese).
|
4 |
李丽雅. 大型飞机增升装置技术发展综述[J]. 航空科学技术, 2015, 26(5): 1-10.
|
|
LI L Y. Review of high-lift device technology development on large aircrafts[J]. Aeronautical Science & Technology, 2015, 26(5): 1-10 (in Chinese).
|
5 |
冯蕴雯, 唐家强, 薛小锋, 等. 考虑磨损演化的铰链式襟翼机构动力学仿真研究[J]. 西北工业大学学报, 2024, 42(2): 222-231.
|
|
FENG Y W, TANG J Q, XUE X F, et al. Study on dynamic simulation of hinged flap mechanism considering wear evolution[J]. Journal of Northwestern Polytechnical University, 2024, 42(2): 222-231 (in Chinese).
|
6 |
朱昆鹏. 民机襟翼运动机构可靠性试验研究[D]. 南京: 南京航空航天大学, 2011.
|
|
ZHU K P. Test and research of flap movement mechanism reliability for the civil aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese).
|
7 |
中国民用航空局. 中国民用航空规章第25部-运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局, 2011.
|
|
Civil Aviation Administration of China. Civil aviation regulations of China, part 25-airworthiness standards for transport aircraft: CCAR-25-R4 [S]. Beijing: Civil Aviation Administration of China, 2011 (in Chinese).
|
8 |
European Aviation Safety Agency. Easy access rules for large aeroplanes (CS 25) (Amendment 5) [S]. Cologne: European Aviation Safety Agency, 2008.
|
9 |
GUELZAU H. Flexible multi-body modeling and simulation of flap systems in transport aircraft determination of dynamics and failure loads[C]∥MSC SoftwareVPD Conference. California: MSC Software, 2006.
|
10 |
JÁNOS Z, CHRISTOPH W. Modeling smooth contacts in elastic multibody systems[C]∥Multibody Dynamics 2009, ECCOMAS Thematic Conference. 2009.
|
11 |
冯蕴雯, 何智宇, 唐家强, 等. 民用飞机顺气流襟翼机构故障工况动力学仿真研究[J]. 航空工程进展, 2023, 14(4): 85-93.
|
|
FENG Y W, HE Z Y, TANG J Q, et al. Dynamics simulation research on fault conditions of deflecting to airflow flap mechanism of civil aircraft[J]. Advances in Aeronautical Science and Engineering, 2023, 14(4): 85-93 (in Chinese).
|
12 |
谢沅辰, 麦云飞, 徐杭东. 基于AMEsim飞机襟翼液压系统故障分析与仿真[J]. 农业装备与车辆工程, 2020, 58(2): 141-145.
|
|
XIE Y C, MAI Y F, XU H D. Fault analysis and simulation of flap hydraulic system based on AMEsim[J]. Agricultural Equipment & Vehicle Engineering, 2020, 58(2): 141-145 (in Chinese).
|
13 |
陈炎, 董萌. 民用飞机襟翼运动机构运动可靠性分析及优化设计[J]. 机械设计与制造工程, 2021, 50(6): 38-42.
|
|
CHEN Y, DONG M. Movement reliability analysis and optimization of civil aircraft’s flap mechanism[J]. Machine Design and Manufacturing Engineering, 2021, 50(6): 38-42 (in Chinese).
|
14 |
周杰. 襟翼机构运动可靠性仿真分析[D]. 沈阳: 东北大学, 2018.
|
|
ZHOU J. Simulation and analysis of movement reliability of flap mechanism[D]. Shenyang: Northeastern University, 2018 (in Chinese).
|
15 |
钟云龙, 张钟文, 张大鹏, 等. 基于失效模式的襟翼运动机构可靠性仿真分析[J]. 电子产品可靠性与环境试验, 2019, 37(5): 1-7.
|
|
ZHONG Y L, ZHANG Z W, ZHANG D P, et al. Reliability simulation analysis of a flap motion mechanism based on failure modes[J]. Electronic Product Reliability and Environmental Testing, 2019, 37(5): 1-7 (in Chinese).
|
16 |
KURT A. Failure protection device for flap systems on aircraft main planes: DE3505839C2[P]. 1989-11-09.
|
17 |
POPPE B, AUHAGEN K. Flap interconnection system for aircraft: US7546984[P]. 2009-06-16.
|
18 |
黄勇, 田忠良, 吴强, 等. 内外襟翼交联装置: CN107161325B[P]. 2018-09-11.
|
|
HUANG Y, TIAN Z L, WU Q, et al. The interconnection device between inner and outer flaps: CN107161325B[P]. 2018-09-11 (in Chinese).
|
19 |
周晓宸, 罗宇波, 薛璞, 等. 大型民机襟翼间交联系统设计方法研究[J]. 西北工业大学学报, 2022, 40(4): 717-722.
|
|
ZHOU X C, LUO Y B, XUE P, et al. Design method of interconnection struts between flaps of large transport aircraft[J]. Journal of Northwestern Polytechnical University, 2022, 40(4): 717-722 (in Chinese).
|
20 |
章仕彪. 大型客机作动器脱开故障襟翼动力学特性研究[D]. 南京: 南京航空航天大学, 2021.
|
|
ZHANG S B. Study on flaps dynamic characteristics of an airliner with actuator disconnected failure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese).
|
21 |
黄勇, 徐武, 朱林刚, 等. 大型客机后缘襟翼操纵与非对称控制[J]. 力学季刊, 2022, 43(1): 110-121.
|
|
HUANG Y, XU W, ZHU L G, et al. Trailing-edge flap operation and asymmetric control for large passenger aircraft[J]. Chinese Quarterly of Mechanics, 2022, 43(1): 110-121 (in Chinese).
|
22 |
张柁, 宋鹏飞, 尹伟, 等. 空间复杂运动增升结构随动加载技术[J]. 航空学报, 2022, 43(6): 526044.
|
|
ZHANG T, SONG P F, YIN W, et al. Follow-up loading technology for lift structure with spatial complex movement[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526044 (in Chinese).
|
23 |
刘玮, 刘冰, 郑建军. 襟翼运动机构全尺寸疲劳试验技术研究[J]. 工程与试验, 2022, 62(2): 37-38.
|
|
LIU W, LIU B, ZHENG J J. Research on full-scale fatigue test technology of flap mechanism[J]. Engineering & Test, 2022, 62(2): 37-38 (in Chinese).
|
24 |
贺谦, 夏峰, 许飞, 等.大型运输机增升结构多参量耦合疲劳试验方法[J/OL]. 航空动力学报, 1-8[2024-07-15]. .
|
|
HE Q, XIA F, XU F,et al. Spatial motion aircraft lift-rising structure life verification method with coupled multiparameter[J]. Journal of Aerospace Power, 1-8[2024-07-15]. (in Chinese).
|
25 |
高煜翔, 陆建国, 方俊伟, 等. 民机襟翼交联机构吸能元件的吸能特性[J]. 航空动力学报, 2022, 37(8): 1771-1779.
|
|
GAO Y X, LU J G, FANG J W, et al. Energy absorption characteristics of energy-absorbing elements of civil aircraft flap crosslinking mechanism[J]. Journal of Aerospace Power, 2022, 37(8): 1771-1779 (in Chinese).
|
26 |
ALEXANDER J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1960, 13(1): 10-15.
|
27 |
余同希. 结构的耐撞性和能量吸收装置[J]. 力学与实践, 1985, 7(3): 2-9.
|
|
YU T X. Structural crashworthiness and energy absorption device[J]. Mechanics and Engineering, 1985, 7(3): 2-9 (in Chinese).
|
28 |
雷君相, 李笠. 圆管缩径能量吸收装置的研究[J]. 塑性工程学报, 1995, 2(2): 57-64.
|
|
LEI J X, LI L. Research for cylindrical tube sinking energy absorbing devices[J]. Journal of Plasticity Engineering, 1995, 2(2): 57-64 (in Chinese).
|
29 |
徐龙江, 雷君相, 高贵杰. 变径管与薄壁圆管轴向压缩过程研究[J]. 机械工程与自动化, 2015(3): 137-138.
|
|
XU L J, LEI J X, GAO G J. Study on axial compression of thin wall cylinder tube and variable-diameter tube[J]. Mechanical Engineering & Automation, 2015(3): 137-138 (in Chinese).
|
30 |
崔自轩, 雷君相. 材料性能对变径管自由翻转变形模式的影响[J]. 有色金属工程, 2017, 7(6): 5-8.
|
|
CUI Z X, LEI J X. Impact of material properties on variable diameter tube free inversion deformation model[J]. Nonferrous Metals Engineering, 2017, 7(6): 5-8 (in Chinese).
|
31 |
李伟, 雷君相, 汪奇超, 等. 双直径圆管能量吸收元件的研究[J]. 热加工工艺, 2011, 40(23): 100-102.
|
|
LI W, LEI J X, WANG Q C, et al. Research on energy-absorbing component dual-diameter tube[J]. Hot Working Technology, 2011, 40(23): 100-102 (in Chinese).
|