收稿日期:
2024-09-19
修回日期:
2024-10-14
接受日期:
2024-11-04
出版日期:
2024-11-08
发布日期:
2024-11-07
通讯作者:
邢誉峰
E-mail:xingyf@buaa.edu.cn
基金资助:
Received:
2024-09-19
Revised:
2024-10-14
Accepted:
2024-11-04
Online:
2024-11-08
Published:
2024-11-07
Contact:
Yufeng XING
E-mail:xingyf@buaa.edu.cn
Supported by:
摘要:
加筋板结构在航空航天、船舶等工程领域中应用广泛,对其固有振动特性展开研究具有重要的理论价值和应用价值。针对矩形加筋板固有模态的求解问题,基于Rayleigh商和Rayleigh-Ritz法提出一种半解析分析方法。在该方法中,封闭形式的薄板模态函数作为加筋板模态函数的基函数,根据Rayleigh商得到加筋板频率方程和模态函数。此外,对于四边简支单筋加筋板的固有振动问题,由Rayleigh商得到其控制微分方程,采用分离变量方法求得其精确解。通过把所得结果与有限元结果和文献结果进行比较,验证了所提方法的有效性与精确性。所提方法可以用于加筋板的理论分析和参数化设计。
中图分类号:
邢誉峰, 李玉婷. 矩形加筋板固有振动半解析分析方法[J]. 航空学报, 2025, 46(5): 531240.
Yufeng XING, Yuting LI. Semi-analytical solution for natural vibration of rectangular stiffened plates[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531240.
表 5
单筋对称加筋板的固有频率
阶次 | 固有频率/Hz | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
未考虑筋扭转变形 | 考虑筋扭转变形 | |||||||||
简支 | 固支 | 简支 | 固支 | |||||||
半解析解 | 精确解 | FEM | 半解析解 | FEM | 半解析解 | 精确解 | FEM | 半解析解 | FEM | |
1 | 137.84 | 137.78 | 137.76 | 274.48 | 274.36 | 137.79 | 137.78 | 137.76 | 284.82 | 284.38 |
2 | 184.04 | 184.04 | 183.97 | 284.90 | 284.38 | 210.90 | 209.78 | 203.96 | 308.05 | 304.77 |
3 | 325.58 | 325.52 | 325.40 | 454.68 | 454.29 | 325.52 | 325.52 | 325.40 | 488.29 | 488.13 |
4 | 330.20 | 330.20 | 329.94 | 488.35 | 488.13 | 357.96 | 357.92 | 357.65 | 498.56 | 491.50 |
5 | 358.67 | 357.92 | 357.65 | 498.96 | 497.75 | 365.38 | 362.19 | 358.11 | 498.97 | 497.75 |
6 | 573.78 | 573.78 | 573.28 | 738.96 | 738.45 | 602.45 | 601.10 | 601.76 | 774.82 | 769.59 |
表 6
单筋偏置加筋板的固有频率
阶次 | 固有频率/Hz | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
未考虑筋扭转变形 | 考虑筋扭转变形 | |||||||||
简支 | 固支 | 简支 | 固支 | |||||||
半解析解 | 精确解 | FEM | 半解析解 | FEM | 半解析解 | 精确解 | FEM | 半解析解 | FEM | |
1 | 96.84 | 96.84 | 96.82 | 165.34 | 165.30 | 102.98 | 102.69 | 101.40 | 169.88 | 169.22 |
2 | 195.59 | 195.59 | 195.54 | 311.14 | 308.96 | 202.33 | 201.96 | 200.44 | 323.20 | 321.61 |
3 | 248.47 | 248.45 | 248.36 | 356.93 | 354.51 | 252.37 | 251.94 | 251.44 | 360.75 | 359.77 |
4 | 325.89 | 325.88 | 325.78 | 486.84 | 475.06 | 326.57 | 326.53 | 326.29 | 492.26 | 491.71 |
5 | 399.07 | 398.97 | 398.69 | 513.43 | 508.58 | 411.76 | 410.29 | 408.65 | 526.88 | 523.37 |
6 | 490.94 | 490.90 | 490.74 | 647.69 | 639.89 | 494.15 | 493.63 | 493.24 | 651.19 | 649.75 |
7 | 552.75 | 552.68 | 552.51 | 690.07 | 677.58 | 563.35 | 562.81 | 560.98 | 692.64 | 692.13 |
8 | 620.75 | 620.48 | 620.05 | 766.08 | 752.06 | 634.97 | 633.21 | 631.34 | 790.85 | 784.27 |
表 7
多筋加筋板的固有频率
阶次 | 固有频率/Hz | |||||||
---|---|---|---|---|---|---|---|---|
未考虑筋扭转变形 | 考虑筋扭转变形 | |||||||
简支 | 固支 | 简支 | 固支 | |||||
半解析解 | FEM | 半解析解 | FEM | 半解析解 | FEM | 半解析解 | FEM | |
1 | 164.14 | 164.13 | 366.13 | 366.01 | 172.69 | 170.44 | 376.78 | 376.34 |
2 | 413.10 | 412.94 | 671.64 | 670.91 | 425.64 | 422.78 | 691.23 | 689.68 |
3 | 522.17 | 521.73 | 816.82 | 814.30 | 531.71 | 529.80 | 834.10 | 831.53 |
4 | 652.91 | 652.33 | 1 005.83 | 1 002.39 | 684.09 | 677.80 | 1 056.13 | 1 049.26 |
5 | 872.24 | 870.48 | 1 153.14 | 1 146.83 | 882.99 | 880.87 | 1 172.79 | 1 164.78 |
6 | 1 014.30 | 1 011.95 | 1 414.43 | 1 407.26 | 1 059.78 | 1 050.64 | 1 446.85 | 1 430.91 |
7 | 1 109.54 | 1 104.24 | 1 422.17 | 1 407.58 | 1 120.31 | 1 118.36 | 1 484.64 | 1 471.23 |
8 | 1 167.80 | 1 162.12 | 1 469.30 | 1 461.46 | 1 217.39 | 1 206.50 | 1 617.89 | 1 598.36 |
表 8
简支对角斜置加筋板的固有频率
阶次 | 固有频率/Hz | |||||||
---|---|---|---|---|---|---|---|---|
未考虑筋扭转变形 | 考虑筋扭转变形 | |||||||
筋高0.05 m | 筋高0.1 m | 筋高0.05 m | 筋高0.1 m | |||||
半解析解 | FEM | 半解析解 | FEM | 半解析解 | FEM | 半解析解 | FEM | |
1 | 83.94 | 83.86 | 101.47 | 99.70 | 83.94 | 83.86 | 101.47 | 99.70 |
2 | 188.82 | 188.64 | 229.61 | 226.18 | 188.83 | 188.65 | 229.66 | 226.18 |
3 | 231.32 | 231.17 | 265.35 | 262.42 | 231.36 | 231.20 | 265.43 | 262.42 |
4 | 335.75 | 335.26 | 395.48 | 394.19 | 335.76 | 335.27 | 395.76 | 394.19 |
5 | 360.48 | 360.21 | 405.29 | 397.88 | 360.55 | 360.27 | 405.42 | 397.88 |
6 | 474.93 | 474.69 | 543.90 | 538.41 | 475.04 | 474.79 | 544.14 | 538.41 |
7 | 512.34 | 511.43 | 581.41 | 579.80 | 512.36 | 511.45 | 581.68 | 579.80 |
8 | 575.88 | 575.33 | 585.35 | 577.81 | 575.99 | 575.43 | 585.63 | 577.87 |
9 | 608.38 | 607.58 | 777.57 | 765.39 | 608.44 | 607.65 | 779.32 | 765.39 |
10 | 751.62 | 749.98 | 796.23 | 787.73 | 751.65 | 750.00 | 796.77 | 787.73 |
1 | SINHA L, MISHRA S S, NAYAK A N, et al. Free vibration characteristics of laminated composite stiffened plates: Experimental and numerical investigation[J]. Composite Structures, 2020, 233: 111557. |
2 | ISANAKA B R, AKBAR M A, MISHRA B P, et al. Free vibration analysis of thin plates: Bare versus Stiffened[J]. Engineering Research Express, 2020, 2(1): 015014. |
3 | 游翔宇, 郑文成, 李威, 等. 基于边光滑有限元法的加筋板静力和自由振动分析[J]. 计算力学学报, 2018, 35(1): 28-34. |
YOU X Y, ZHENG W C, LI W, et al. Static and free vibration analysis of stiffened plates by ES-FEM using triangular element[J]. Chinese Journal of Computational Mechanics, 2018, 35(1): 28-34 (in Chinese). | |
4 | NAIR P S, RAO M S. On vibration of plates with varying stiffener length[J]. Journal of Sound Vibration, 1984, 95(1): 19-29. |
5 | OLSON M D, HAZELL C R. Vibration studies on some integral rib-stiffened plates[J]. Journal of Sound Vibration, 1977, 50(1): 43-61. |
6 | 刘文光, 郭隆清, 付俊, 等. 加筋薄板的自由振动分析[J]. 机械设计与制造, 2017(2): 58-61, 66. |
LIU W G, GUO L Q, FU J, et al. Free vibration analysis of stiffened thin plate[J]. Machinery Design & Manufacture, 2017(2): 58-61, 66 (in Chinese). | |
7 | 刘璟泽, 姜东, 韩晓林, 等. 曲线加筋Kirchhoff-Mindlin板自由振动分析[J]. 力学学报, 2017, 49(4): 929-939. |
LIU J Z, JIANG D, HAN X L, et al. Free vibration analysis of curvilinearly stiffened kirchhoff-mindlin plates[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 929-939 (in Chinese). | |
8 | 肖倩, 朱仁传. 基于光滑有限元的加筋板静力自由振动和声辐射分析[J]. 中国造船, 2019, 60(2): 13-28. |
XIAO Q, ZHU R C. Static and free vibration analysis of stiffened plates by ES-FEM with triangular element[J]. Shipbuilding of China, 2019, 60(2): 13-28 (in Chinese). | |
9 | AKSU G, ALI R. Free vibration analysis of stiffened plates using finite difference method[J]. Journal of Sound Vibration, 1976, 48(1): 15-25. |
10 | 彭林欣, 谌亚菁, 覃霞, 等. 弹性地基圆形加肋板静力弯曲及弯曲自由振动分析的无网格法[J]. 振动与冲击, 2022, 41(7): 11-22, 30. |
PENG L X, CHEN Y J, QIN X, et al. Meshless method for static bending and free bending vibration analysis of stiffened circular plates on elastic foundation[J]. Journal of Vibration and Shock, 2022, 41(7): 11-22, 30 (in Chinese). | |
11 | 陈思亚, 陈卫, 黄钟民, 等. 弹性地基加肋功能梯度板自由振动分析的无网格法[J]. 计算力学学报, 2022, 39(6): 691-698. |
CHEN S Y, CHEN W, HUANG Z M, et al. Meshless method for free vibration analysis of stiffened functionally graded plates resting on elastic foundation[J]. Chinese Journal of Computational Mechanics, 2022, 39(6): 691-698 (in Chinese). | |
12 | 孟亮, 杨金沅, 杨智威, 等. 典型飞机壁板结构的抗屈曲优化设计与试验验证[J]. 航空学报, 2024, 45(5): 529679. |
MENG L, YANG J Y, YANG Z W, et al. Buckling-resisting optimization design of typical aircraft panel and test validation[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529679 (in Chinese). | |
13 | WITTRICK W H. General sinusoidal stiffness matrices for buckling and vibration analyses of thin flat-walled structures[J]. International Journal of Mechanical Sciences, 1968, 10(12): 949-966. |
14 | 周平, 赵德有. 四边简支单向加筋矩形板的振动特性分析[J]. 中国海洋平台, 2006, 21(5): 16-20. |
ZHOU P, ZHAO D Y. Analysis of vibration characteristic for simply supported rectangular plate stiffened in single direction[J]. China Offshore Platform, 2006, 21(5): 16-20 (in Chinese). | |
15 | 周叮. 两对边简支加筋矩形板模向自由振动的动刚度解法[J]. 强度与环境, 1992, 19(1): 35-40, 46. |
ZHOU D. Dynamic stiffness method of transverse vibration of reinforced rectangular plates with two opposite edges simply supported[J]. Structure & Environment Engineering, 1992, 19(1): 35-40, 46 (in Chinese). | |
16 | DAMNJANOVIĆ E, NEFOVSKA-DANILOVIĆ M, PETRONIJEVIĆ M, et al. Application of the dynamic stiffness method in the vibration analysis of stiffened composite plates[J]. Procedia Engineering, 2017, 199: 224-229. |
17 | SAHOO P R, BARIK M. Free vibration analysis of curved stiffened plates[J]. Journal of Vibration Engineering & Technologies, 2021, 9(6): 1091-1108. |
18 | 张俊, 李天匀, 朱翔, 等. 开口加强矩形加筋板的自振特性分析[J]. 哈尔滨工程大学学报, 2020, 41(11): 1617-1622. |
ZHANG J, LI T Y, ZHU X, et al. Free vibration analysis of stiffened rectangular plates with a cutout[J]. Journal of Harbin Engineering University, 2020, 41(11): 1617-1622 (in Chinese). | |
19 | 耿佳傲, 陈美霞, 周志伟. 夹芯复合材料加筋板真空和水中自由振动分析[J]. 舰船科学技术, 2022, 44(11): 12-21. |
GENG J A, CHEN M X, ZHOU Z W. Free vibration analysis in vacuum and water of sandwich composite stiffened plates[J]. Ship Science and Technology, 2022, 44(11): 12-21 (in Chinese). | |
20 | 杜菲, 马天兵, 钱星光, 等. 基于Rayleigh-Ritz法的四边固支加筋板振动研究[J]. 科学技术与工程, 2017, 17(11): 137-142. |
DU F, MA T B, QIAN X G, et al. Vibration research of stiffened plate with four edges clamped based on rayleigh-ritz method[J]. Science Technology and Engineering, 2017, 17(11): 137-142 (in Chinese). | |
21 | DOWELL E H. Free vibrations of a linear structure with arbitrary support conditions[J]. Journal of Applied Mechanics, 1971, 38(3): 595. |
22 | 李凯, 何书韬, 邱永康, 等. 附加多个集中质量加筋板的自由振动分析[J]. 中国舰船研究, 2015, 10(5): 66-70. |
LI K, HE S T, QIU Y K, et al. Free vibration analysis of rectangular stiffened plates with several lumped mass[J]. Chinese Journal of Ship Research, 2015, 10(5): 66-70 (in Chinese). | |
23 | 曾子平, 黄田, Hamilton J F. 任意加筋矩形板的振动分析[J]. 振动与冲击, 1988, 4: 47-53. |
ZENG Z P, HAUNG T, HAMILTON J F. Vibration analysis of arbitrarily stiffened rectangular plates[J]. Journal of Vibration and Shock, 1988, 4: 47-53 (in Chinese). | |
24 | 杨坤, 梅志远, 李华东. 正交加筋复合材料夹层板的自由振动求解[J]. 上海交通大学学报, 2014, 48(6): 863-869. |
YANG K, MEI Z Y, LI H D. Free vibration analysis of orthogonally rib-stiffened composite sandwich plate[J]. Journal of Shanghai Jiao Tong University, 2014, 48(6): 863-869 (in Chinese). | |
25 | 吴梵, 杨坤, 梅志远, 等. 正交加筋复合材料夹层板弯曲问题求解[J]. 船舶力学, 2013, 17(1): 92-101. |
WU F, YANG K, MEI Z Y, et al. The bending solution of orthogonally rib-stiffened composite sandwich plate[J]. Journal of Ship Mechanics, 2013, 17(1): 92-101 (in Chinese). | |
26 | 梁浩锋, 夏飞, 金福松, 等. 加筋复合材料层合板的自由振动特性与优化[J]. 振动与冲击, 2021, 40(18): 190-196. |
LIANG H F, XIA F, JIN F S, et al. Free vibration of rib-reinforced composite laminates and its optimization[J]. Journal of Vibration and Shock, 2021, 40(18): 190-196 (in Chinese). | |
27 | 邢誉峰, 李根, 袁冶. 矩形板本征值问题的封闭解析解法综述[J]. 航空学报, 2022, 43(10): 527333. |
XING Y F, LI G, YUAN Y. A review of closed-form analytical solution methods for eigenvalue problems of rectangular plates[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527333 (in Chinese). | |
28 | XING Y F, LIU B. New exact solutions for free vibrations of rectangular thin plates by symplectic dual method[J]. Acta Mechanica Sinica, 2009, 25(2): 265-270. |
29 | XING Y F, SUN Q Z, LIU B, et al. The overall assessment of closed-form solution methods for free vibrations of rectangular thin plates[J]. International Journal of Mechanical Sciences, 2018, 140: 455-470. |
30 | XING Y F, WANG Z K. An improved separation-of-variable method for the free vibration of orthotropic rectangular thin plates[J]. Composite Structures, 2020, 252: 112664. |
31 | XING Y F, WANG Z K. An extended separation-of-variable method for the free vibration of orthotropic rectangular thin plates[J]. International Journal of Mechanical Sciences, 2020, 182: 105739. |
32 | 姚本炎, 黄其柏. 加筋薄板结构振动与声辐射特性研究[J]. 华中科技大学学报(自然科学版), 2001, 29(2): 90-92. |
YAO B Y, HUANG Q B. Research on the vibration and sound radiation characteristics of stiffened thin plate[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2001, 29(2): 90-92 (in Chinese). | |
33 | SAHOO P R, BARIK M. Free vibration analysis of stiffened plates[J]. Journal of Vibration Engineering & Technologies, 2020, 8(6): 869-882. |
34 | MISHRA B P, BARIK M. Free flexural vibration of thin stiffened plates using NURBS-Augmented finite element method[J]. Structures, 2021, 33: 1620-1632. |
35 | SHEIKH A H, MUKHOPAKHYAY M. Free vibration analysis of stiffened plates with arbitrary planform by the general spline finite strip method[J]. Journal of Sound Vibration, 1993, 162(1): 147-164. |
[1] | 万冰, 陈军, 白菡尘. 基于等效热力过程的宽域冲压全流道性能设计方法[J]. 航空学报, 2024, 45(4): 128757-128757. |
[2] | 杨钧超, 王雪明, 陈向明, 邹鹏, 王喆. 低速冲击损伤对复材加筋板压缩性能的影响[J]. 航空学报, 2023, 44(20): 228498-228498. |
[3] | 姜周, 范雨, 李琳, 石佳慧. 基于禁带机理的加筋板减振设计方法[J]. 航空学报, 2022, 43(9): 226007-226007. |
[4] | 高伟, 刘存, 陈顺强. 变厚度复合材料加筋板轴压试验及分析方法[J]. 航空学报, 2022, 43(11): 526764-526764. |
[5] | 焦敬品, 李海平, 翟顺成, 何存富, 吴斌. 基于压缩感知的金属加筋板兰姆波健康监测技术[J]. 航空学报, 2019, 40(7): 422695-422695. |
[6] | 张彦军, 朱亮, 杨卫平, 李小鹏, 雷晓欣. 舰载机机身加筋壁板屈曲疲劳试验[J]. 航空学报, 2019, 40(4): 622276-622276. |
[7] | 王志刚, 杨宇, 段世慧. 基于参数化分析的柔性后缘优化设计[J]. 航空学报, 2017, 38(S1): 721562-721562. |
[8] | 王燕, 李书, 许秋怡, 马骏. 复合材料加筋板剪切后屈曲分析与优化设计[J]. 航空学报, 2016, 37(5): 1512-1525. |
[9] | 倪杨, 徐元铭. 金属次加筋结构的单轴压载稳定性优化[J]. 航空学报, 2015, 36(5): 1511-1519. |
[10] | 卢文书;马元春;梁伟;卢子兴. 机身复合材料加筋板壳的稳定性及强度分析系统[J]. 航空学报, 2009, 30(5): 895-900. |
[11] | 尼早;邱志平. 分布参数为模糊变量的结构体系模糊可靠性分析方法及应用[J]. 航空学报, 2009, 30(5): 872-878. |
[12] | 矫桂琼;杜凯;杨成鹏;卢智先 . 含离散源损伤复合材料加筋板的压缩特性[J]. 航空学报, 2007, 28(6): 1383-1388. |
[13] | 李亚智;张向. 整体加筋壁板的破损安全特性与断裂控制分析[J]. 航空学报, 2006, 27(5): 842-846. |
[14] | 沈国际;陶利民;陈仲生. 减速器振动信号的经验模态分解[J]. 航空学报, 2005, 26(1): 62-65. |
[15] | 周春华. 并行计算中一种非结构网格分割方法[J]. 航空学报, 2004, 25(3): 229-232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学