[1] ENVIA E, WILSON A G, HUFF D L. Fan noise: a challenge to CAA[J]. International Journal of Compu-tational Fluid Dynamics, 2004(6): 18.[2] POLACSEK C, BURGUBURU S, REDONNET S, et al. Numerical simulations of fan interaction noise us-ing a hybrid approach[J]. AIAA Journal, 2006, 44(6):1188-1196.[3] RARATA Z, GABARD G, SUGIMOTO R, et al. Inte-grating CFD source predictions with time-domain CAA for intake fan noise prediction[C]// 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, AIAA paper 2014-2456, 2014.[4] 王良锋. 风扇管道声模态识别的实验及数值模拟研究[D]. 西安: 西北工业大学, 2017.WANG L F. Experimental and numerical study on duct mode identification of fan noise[D]. Xian, Northwestern polytechnical university, 2017.[5] HE L, NING W. Efficient approach for analysis of unsteady viscous flows in turbomachines[J]. AIAA Journal, 1998, 36(11): 2005–2012.[6] FERRANTE P, FRANCESCANTONIO P D, HOFFER P A, et al. Integrated "CFD - acoustic" computational approach to the simulation of aircraft fan noise[J]. Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 2A: Turbomachinery, 2014.[7] MANN A, PEROT F, KIM M S. Advanced noise con-trol fan direct aeroacoustics predictions using a Lat-tice-Boltzmann method[C]// 18th AIAA/CEAS Aeroa-coustics Conference, Colorado Springs, CO, AIAA paper 2012-2287, 2012.[8] DAROUKH M, GARREC T L, POLACSEK C. Low-speed turbofan aerodynamic and acoustic prediction with an isothermal Lattice Boltzmann method[J]. AIAA Journal, 2022, 60(2): 1152-1170.[9] FERNANDES L S, HOUSMAN J A, KENWAY G K, et al. Fan noise predictions of the NASA source diag-nostic test using unsteady simulations with LAVA part I: near-field aerodynamics and turbulence[C]// AIAA SCITECH 2023 Forum, National Harbor, MD, AIAA paper 2023-0793, 2023.[10] TAM C K W, WEBB J C. Dispersion-relation-preserving finite difference schemes for computa-tional acoustics[J]. Journal of Computational Physics, 1993, 107: 262–281.[11] SUN Y Z, WANG Z J, LIU Y, High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids[J]. Com-munications in Computational Physics, 2007, 2(2): 310-333.[12] GAO J H. A sliding-mesh interface method for three dimensional high order spectral difference solver[J]. Journal of Computational Physics, 2022, 454: 110988.[13] STANESCU D, HABASHI W G. 2N-Storage low dis-sipation and dispersion Runge-Kutta schemes for computational acoustics[J]. Journal of Computational Physics, 1998, 143: 674-681.[14] ZHANG D F, GAO J H. GPU implementation and optimization of a high-order spectral difference method for aeroacoustic problems[J]. Journal of Aer-ospace Engineering, 2024, 37(3): 04024025.[15] SUTLIFF D L. A 20 year retrospective of the ad-vanced noise control fan – contributions to turbo-fan noise research[C]// AIAA Propulsion and Energy 2019 Forum. 2019.[16] HU F Q. On the construction of PML absorbing boundary condition for the non-linear Euler equa-tions[C]// 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006.[17] 张东飞, 高军辉. GPU加速高阶谱差分方法在风扇噪声中的应用[J]. 航空学报, 2024, 45(08): 123-137.ZHANG D F, GAO J H. Application of GPU?accelerated high?order spectral difference meth-od in fan noise[J]. Acta Aeronauticaet Astronautica Sinica, 2024, 45(08): 123-137.[18] MALDONADO A L, BOBENRIETH MISERDA R F, PIMENTA B G. Computational tonal noise prediction for the advanced noise control fan[C]// 18th AIAA/CEAS Aeroacoustics Conference, Colorado Springs, CO, AIAA paper 2012-2128, 2012.[19] MCALLOSTER J, LOEW R A, LAUER J T, et al. The advanced noise control fan baseline measurements[C]. 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Or-lando, Florida, AIAA paper 2009-624, 2009. |