| 1 |
VAN DEN BERG M L, FALKNER P, ATZEI A C, et al. Venus entry probe technology reference study[J]. Advances in Space Research, 2006, 38(11): 2626-2632.
|
| 2 |
雷岩鹏, 杨春信. 金星气球环境分析与热动力研究[J]. 航空动力学报, 2012, 27(11): 2505-2510.
|
|
LEI Y P, YANG C X. Study of environment analysis and thermodynamic on Venus balloon[J]. Journal of Aerospace Power, 2012, 27(11): 2505-2510 (in Chinese).
|
| 3 |
SAGDEEV R Z. An overview of the Soviet Vega balloon experiment and studies of the atmosphere of Venus: NASA TM-88516[R]. Washington, D.C.: NASA Center for Aerospace Information (CASI), 1986.
|
| 4 |
吴耀, 姚伟, 王超, 等. 气球型深空探测器技术研究进展[J]. 航天器工程, 2014, 23(6): 105-113.
|
|
WU Y, YAO W, WANG C, et al. Progress of balloon technologies for deep space explorer[J]. Spacecraft Engineering, 2014, 23(6): 105-113 (in Chinese).
|
| 5 |
DOLGOPOLOV V P, PICHKHADZE K M, SUKHANOV K G. The Vega project: A space mission to Venus and Halley’s Comet[J]. Solar System Research, 2011, 46(7): 568-577.
|
| 6 |
张宇. 火星降落伞的结构设计与初步性能试验研究[J]. 航天返回与遥感, 2011, 32(3): 16-22.
|
|
ZHANG Y. Structure design and elementary performance tests study on Mars parachute[J]. Spacecraft Recovery & Remote Sensing, 2011, 32(3): 16-22 (in Chinese).
|
| 7 |
HERRINGTON S M, RENZELMAN J T, FIELDS T D, et al. Vertical wind-tunnel testing of steerable cruciform parachute system[J]. Journal of Aircraft, 2019, 56(2): 747-757.
|
| 8 |
UNDERWOOD J C, SAUNDERS A, ROGERS S, et al. Subsonic wind tunnel testing of various parachute types[C]∥23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2015: 2112.
|
| 9 |
贾贺, 包进进, 荣伟. 设计参数及大气参数对降落伞充气性能的影响[J]. 航天返回与遥感, 2020, 41(3): 28-36.
|
|
JIA H, BAO J J, RONG W. The design and atmospheric parameters influences on parachute inflation performance[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(3): 28-36 (in Chinese).
|
| 10 |
徐欣, 贾贺, 陈雅倩, 等. 织物透气性对火星用降落伞气动特性影响机理[J]. 航空学报, 2022, 43(12): 126289.
|
|
XU X, JIA H, CHEN Y Q, et al. Influence mechanism of fabric permeability of canopy on aerodynamic performance of Mars parachute[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126289 (in Chinese).
|
| 11 |
BAGINSKI F E. Flow past a descending balloon: NAG5-5292[R]. Washington, D.C.: NASA, 2001.
|
| 12 |
BAGINSKI F E. A mathematical model for a partially inflated balloon with periodic lobes[J]. Advances in Space Research, 2002, 30(5): 1167-1171.
|
| 13 |
BAGINSKI F E. Nonuniqueness of strained ascent shapes of high altitude balloons[J]. Advances in Space Research, 2004, 33(10): 1705-1710.
|
| 14 |
SMITH M, SCOTT R, MARSH J. Refinements to the aerodynamic modeling of an ascending balloon[C]∥ AIAA Balloon Systems Conference. Reston: AIAA, 2009.
|
| 15 |
HUGHES T J R, LIU W K, ZIMMERMANN T K. Lagrangian-Eulerian finite element formulation for incompressible viscous flows[J]. Computer Methods in Applied Mechanics and Engineering, 1981, 29(3): 329-349.
|
| 16 |
AQUELET N, SOULI M, OLOVSSON L. Euler-Lagrange coupling with damping effects: Application to slamming problems[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(1-3): 110-132.
|
| 17 |
余莉, 程涵, 刘雄. 气囊充气过程流固耦合数值模拟[J]. 南京航空航天大学学报, 2010, 42(4): 472-476.
|
|
YU L, CHENG H, LIU X. Numerical simulation of airbag during deploying process[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(4): 472-476 (in Chinese).
|
| 18 |
KHAN M U, MOATAMEDI M, SOULI M, et al. Multiphysics out of position airbag simulation[J]. International Journal of Crashworthiness, 2008, 13(2): 159-166.
|
| 19 |
高兴龙, 唐乾刚, 张青斌, 等. 开缝伞充气过程流固耦合数值研究[J]. 航空学报, 2013, 34(10): 2265-2276.
|
|
GAO X L, TANG Q G, ZHANG Q B, et al. Numerical study on fluid-structure interaction of slot-parachute’s inflation process[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2265-2276 (in Chinese).
|
| 20 |
包文龙, 贾贺, 薛晓鹏, 等. 开“窗” 结构对环帆伞开伞过程影响[J]. 航空学报, 2023, 44(5): 226936.
|
|
BAO W L, JIA H, XUE X P, et al. Influence of ‘windows' structure on inflation process of ringsail parachute[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 226936 (in Chinese).
|
| 21 |
YU L, CHENG H, ZHAN Y N, et al. Study of parachute inflation process using fluid-structure interaction method[J]. Chinese Journal of Aeronautics, 2014, 27(2): 272-279.
|
| 22 |
谢淮, 刘宇, 王臻, 等. 十字形伞开伞充气过程数值仿真研究[J]. 航天返回与遥感, 2023, 44(3): 32-40.
|
|
XIE H, LIU Y, WANG Z, et al. Numerical simulation study of cruciform parachute deployment and inflation process[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(3): 32-40 (in Chinese).
|
| 23 |
WANG J, JOHNSON A. Deployment simulation of ultra-lightweight inflatable structures[C]∥43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002.
|
| 24 |
DENG X W, PELLEGRINO S. Computation of partially inflated shapes of stratospheric balloon structures[C]∥49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference, 10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Specialists Conference. Reston: AIAA, 2008.
|
| 25 |
JUSTUS C, BRAUN R. Atmospheric environments for entry, descent and landing (EDL)[C]∥5th International Planetary Probes Workshop and Short Course. Bordeaux: MSFC, 2008: 198.
|
| 26 |
CRUZ J, MINECK R, KELLER D, et al. Wind tunnel testing of various disk-gap-band parachutes[C]∥17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2003.
|
| 27 |
张宏达, 张济民, 韩超, 等. 大涡模拟研究钝体有旋流流场的拟序结构[J]. 航空学报, 2014, 35(7): 1854-1864.
|
|
ZHANG H D, ZHANG J M, HAN C, et al. Coherent structures of flow fields in swirling flow around a bluff-body using large eddy simulation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1854-1864 (in Chinese).
|