[1]李大中, 张昌治.高技术空战[M]. 北京: 科学普及出版社, 1995: 1-126.
[2]卢鹏, 王瑾.面向第四代战斗机的超视距空战[J].[J].火力与指挥控制, 2009, ((6)):154-157
[3]童中翔, 董小龙, 李传良.超视距空战机动动作库的可视化设计[J].火力与指挥控制, 2006, 31(7):59-63
[4] BONANNI P.Art of the Kill : A Comprehensive Audi-ovisual Guide to Modern Air-To-Air Combat[M]. Ala-meda, California: Spectrum HoloByte, 1993: 1-165.
[5]吴文海, 周思羽, 高丽, 等.超视距空战过程分析[J].飞行力学, 2011, 29(6):45-48
[6] 游航航, 宋帅, 高阳阳, 等.超视距空战中指挥引导效能的发挥[J]. 飞航导弹, 2019(11): 70-72.
[7]董一群, 艾剑良.自主空战技术中的机动决策: 进展与展望[J].航空学报, 2020, 41(S2):4-12
[8] 郑江安.超视距空战领先能力研究[J]. 电光与控制, 2011(3): 9-12, 17.
[9] FU L, LIU J, MENG G, 等.Research on Beyond Visu-al Range Target Allocation and Multi-Aircraft Collabo-rative Decision-Making[C]//第25届中国控制与决策会议. 2013: 1-5.
[10]赵志忠, 高正红, 刘行伟, 等.用攻击点推移速率评估一对一超视距空战效能[J].系统仿真学报, 2005, 17(12):2855-2857
[11] 董彦非, 郭基联, 张恒喜.多机空战目标威胁评估算法[J]. 火力与指挥控制, 2002(04): 73-76.
[12]王利芳, 李莉, 聂志强.超视距空战中目标机动意图评估[J].电光与控制, 2012, 19(12):68-72
[13]徐安, 陈星, 李战武, 等.基于战术攻击区的超视距空战态势评估方法[J].火力与指挥控制, 2020, 45(9):97-102
[14] BILLINGS D, PAPP D, SCHAEFFER J, 等.Opponent Modeling in Poker[C]//AAAI-98 Proceedings. Ameri-can Association of Artificial Intelligence, 1998: 1-7.
[15] TESAURO G.Extending Q-Learning to General Adap-tive Multi-Agent Systems[C]//Advances In Neural In-formation Processing Systems. Vancouver; Whistler, British Columbia, Canada, 2003: 871-878.
[16]CIANCARINI P, FAVINI G P.Monte Carlo Tree Search in Kriegspiel[JOL][J].Artificial Intelligence, 2010, 174(11):670-684
[17]等.A Survey of Monte Carlo Tree Search Methods[JOL][J].IEEE Transactions on Computational Intelligence and AI in Games, 2012, 4(1):1-43
[18]等.Heads-Up Limit Hold’em Poker Is Solved[J].Science, 2015, 347(6218):145-149
[19]邓有朋, 范佳宣, 郑岩, 等.不完全信息下多智能体对手建模[J].航空学报, 2023, 44(S2):443-452
[20] SCHADD F, BAKKES S, SPRONCK P.Opponent Modeling in Real-Time Strategy Games[J]. GAME-ON, 2007: 61-70.
[21] LAVIERS K, SUKTHANKAR G, MOLINEAUX M.Improving Offensive Performance Through Opponent Modeling[C]//Proceedings of the Fifth Artificial Intel-ligence for Interactive Digital Entertainment Confer-ence. Stanford, CA: Association for the Advancement of Artificial Intelligence, 2009: 58-63.
[22] GANZFRIED S, SUN Q.Bayesian Opponent Exploita-tion in Imperfect-Information Games[C]//2018 IEEE Conference on Computational Intelligence and Games (CIG). 2018: 1-8.
[23]NASHED S, ZILBERSTEIN S.A Survey on Opponent Modeling in Adversarial Domains[JOL][J].Journal of Ar-tificial Intelligence Research, 2022, 73(5):1076-9757
[24] LIU H, ZHANG Y, LI S.Simulation and Effectiveness Analysis on One Versus One Beyond Visual Range Air Combat[J]. MATEC Web of Conferences, 2018, 151: 5001-5005.
[25] DANTAS J P A, COSTA A N, GERALDO D, 等.En-gagement Decision Support for Beyond Visual Range Air Combat[C/OL]//2021 Latin American Robotics Symposium (LARS), 2021 Brazilian Symposium on Robotics (SBR), and 2021 Workshop on Robotics in Education (WRE). 2021: 96-101. DOI:10.1109/LARS/SBR/WRE54079.2021.9605380.
[26] GAO W, YANG Z, SUN Z, 等.Real-Time Calculation of Tactical Control Range in Beyond Visual Range Air Combat[C/OL]//2022 IEEE International Conference on Unmanned Systems (ICUS). 2022: 76-80. DOI:10.1109/ICUS55513.2022.9986608.
[27]等.Machine Learning to Improve Situational Awareness in Beyond Visual Range Air Combat[JOL][J].IEEE Latin America Transactions, 2022, 20(8):2039-2045
[28] DANTAS J P A, COSTA A N, MEDEIROS F L L, 等.Supervised Machine Learning for Effective Missile Launch Based on Beyond Visual Range Air Combat Simulations[C/OL]//2022 Winter Simulation Confer-ence (WSC). 2022: 1990-2001. DOI:10.1109/WSC57314.2022.10015384.
[29] SCUKINS E, KLEIN M, ?GREN P.Enhancing Situa-tion Awareness in Beyond Visual Range Air Combat with Reinforcement Learning-Based Decision Sup-port[C/OL]//2023 International Conference on Un-manned Aircraft Systems (ICUAS). 2023: 56-62. DOI:10.1109/ICUAS57906.2023.10156497.
[30] 史建国, 高晓光, 李相民.基于离散模糊动态贝叶斯网络的空战态势评估及仿真[J]. 系统仿真学报, 2006(05): 1093-1096+1100.
[31] 赵全, 黄俊.基于兰彻斯特方程的战斗机超视距空战隐身效能分析[J]. 飞机设计, 2011(2): 9-12, 29.
[32]肖亮, 黄俊, 徐钟书.基于空域划分的超视距空战态势威胁评估[J].北京航空航天大学学报, 2013, 39(10):1309-1313
[33] 顾佼佼, 赵建军, 徐海峰, 等.基于SPA及PSO的超视距空战态势评估[J]. 系统工程与电子技术, 2014(4): 691-696.
[34]杨任农, 房育寰, 张振兴, 等.变分自编码器结合聚类算法在空战态势评估问题上的应用[J].国防科技大学学报, 2019, 41(4):144-155
[35]左家亮, 张滢, 杨任农, 等.中距协同空战决策过程二次聚类重构与评估[J].系统工程与电子技术, 2020, 42(1):108-117
[36] 胡易航, 裘旭益, 张彦, 等.样本级实时空中格斗决策可解释模型研究[J]. 小型微型计算机系统, 2022: 1-7.
[37] 李锋, 孙隆和, 佟明安.基于模糊神经网络的超视距空战战术决策研究[J]. 西北工业大学学报, 2001(2): 317-323.
[38] SONG H, ZHOU R.Study on Pilot’s Assistant System Based on Expert System for Bvrac (Beyond Visual Range Air Combat)[C]//Asian Simulation Confer-ence/The 6th International conference on system Simu-lation and Scientific Computing. 2005.
[39] 赵威.基于专家系统的双机协同攻击决策技术研究[D]. 西北工业大学; 西北工业大学, 2007.
[40]吴江, 宋晗, 周锐, 等.基于扩展影响图的超视距空战辅助决策方法[J].控制与决策, 2010, 25(11):1669-1674
[41]张戈, 寇雅楠, 张彬超, 等.航空飞行员直觉模糊空战战术决策研究[J].计算机仿真, 2016, 33(9):142-146
[42] 陈军, 高晓光, 符小卫.基于粗糙集理论与贝叶斯网络的超视距空战战术决策[J]. 系统仿真学报, 2009(6): 1739-1742, 1747.
[43] DU P, LIU H.Study on Air Combat Tactics Decision-Making Based on Bayesian Networks[C/OL]//2010 2nd IEEE International Conference on Information Man-agement and Engineering. 2010: 252-256. DOI:10.1109/ICIME.2010.5478340.
[44] TOUBMAN A, ROESSINGH J J M, SPRONCK P H M, 等.Rapid Adaptation of Air Combat Behaviour[J]. Frontiers in Artificial Intelligence and Applications, 2016: 1791-1796.
[45] KANG Y, LIU Z, PU Z, 等.Beyond-Visual-Range Tactical Game Strategy for Multiple Uavs[C/OL]//2019 Chinese Automation Congress (CAC). 2019: 5231-5236. DOI:10.1109/CAC48633.2019.8996232.
[46] YANG Z, ZHOU D, PIAO H, 等.Evasive Maneuver Strategy for Ucav in Beyond-Visual-Range Air Combat Based on Hierarchical Multi-Objective Evolutionary Algorithm[J/OL]. IEEE Access, 2020, 8: 46605-46623. DOI:10.1109/ACCESS.2020.2978883.
[47]闫孟达, 俞利新, 左家亮, 等.基于-的超视距空战战术机动组合规划[J].空军工程大学学报·自然科学版, 2022, 23(4):14-19
[48] YUAN W, DUAN W, PENG S, 等.Decision-Making of One-On-One Beyond- Visual-Range Air Combat Based on Improved Q-Network[C/OL]//2018 IEEE In-ternational Conference on Mechatronics and Automa-tion (ICMA). 2018: 809-815. DOI:10.1109/ICMA.2018.8484466.
[49] PIAO H, SUN Z, MENG G, 等.Beyond-Visual-Range Air Combat Tactics Auto-Generation by Reinforcement Learning[C]//2020 International Joint Conference on Neural Networks (IJCNN). 2020: 1-8.
[50] HU D, YANG R, ZUO J, 等.Application of Deep Re-inforcement Learning in Maneuver Planning of Be-yond-Visual-Range Air Combat[J/OL]. IEEE Access, 2021, 9: 32282-32297. DOI:10.1109/ACCESS.2021.3060426.
[51] DANTAS J P A, MAXIMO M R O A, YONEYAMA T.Autonomous Agent for Beyond Visual Range Air Com-bat: a Deep Reinforcement Learning Ap-proach[C]//SIGSIM-PADS ’23: Proceedings of the 2023 ACM SIGSIM Conference on Principles of Ad-vanced Discrete Simulation. 2023.
[52]左家亮, 杨任农, 张滢, 等.基于启发式强化学习的空战机动智能决策[J].航空学报, 2017, 38(10):217-230
[53]张强, 杨任农, 俞利新, 等.基于-强化学习的超视距空战机动决策[J].空军工程大学学报, 2018, 19(6):8-14
[54]吴宜珈, 赖俊, 陈希亮, 等.强化学习算法在超视距空战辅助决策上的应用研究[J].航空兵器, 2021, 28(2):55-61
[55]HA J S, CHAE H J, CHOI H L.A Stochastic Game-Based Approach for Multiple Beyond-Visual-Range Air Combat[J].Unmanned Systems, 2018, 6(1):67-79
[56] LI G, WANG Y, LU C, 等.Multi-UAV Air Combat Weapon-Target Assignment Based on Genetic Algo-rithm and Deep Learning[C/OL]//2020 Chinese Auto-mation Congress (CAC). 2020: 3418-3423. DOI:10.1109/CAC51589.2020.9327662.
[57]YAO K.Study on the BVR Cooperative Air Combat Based on BP Neural Network[JOL][J].Journal of Physics: Conference Series, 2021, 1744(4):042171-
[58]FU L, LONG X, HE W.Air Combat Assignment Prob-lem Based on Bayesian Optimization Algorithm[J].上海交通大学学报英文版, 2022, 27(6):799-805
[59] 吴平健.进化多目标优化方法研究及在空战决策中的应用[D]. 湖南大学; 湖南大学, 2009.
[60] 朱爱峰.基于Petri网的多机协同多目标攻击决策技术研究[D]. 南京航空航天大学; 南京航空航天大学, 2010.
[61] 高永, 郑小洪, 侯志强.基于整数规划的超视距空战目标分配模型研究[J]. 系统仿真学报, 2011(201): 72-74, 105.
[62] 张凯, 周德云, 潘潜.基于混合蛙跳算法的协同空战火力分配[J]. 计算机工程与应用, 2014(17): 263-266.
[63] 赵明明, 李彬, 王敏立.多无人机超视距空战博弈策略研究[J]. 电光与控制, 2015(4): 41-45.
[64] 周铭哲.超视距多无人机协同空战任务规划方法研究[D]. 沈阳航空航天大学; 沈阳航空航天大学, 2019.
[65]吴铭, 牛庆功, 张毅.基于模糊聚类的舰载机超视距空战火力分配模型[J].指挥控制与仿真, 2021, 43(3):45-48
[66]马滢滢, 王国强, 胡笑旋, 等.超视距空战中的多无人机武器目标分配方法[J].中国管理科学, 2022, 30(3):248-257
[67] 李伟.基于微分对策理论的无人战机空战决策方法研究[D]. 沈阳航空航天大学; 沈阳航空航天大学, 2014.
[68] GARCIA E, CASBEER D W, TRAN D, 等.A Differ-ential Game Approach for Beyond Visual Range Tac-tics[C/OL]//2021 American Control Conference (ACC). 2021: 3210-3215. DOI:10.23919/ACC50511.2021.9482650.
[69] MA Y, WANG G, HU X, 等.Cooperative Occupan-cy Decision Making of Multi-UAV in Beyond-Visual-Range Air Combat: a Game Theory Approach[J/OL]. IEEE Access, 2020, 8: 11624-11634. DOI:10.1109/ACCESS.2019.2933022.
[70] LI W, SHI J, WU Y, 等.A Multi-Ucav Cooperative Occupation Method Based on Weapon Engagement Zones for Beyond-Visual-Range Air Combat[J]. De-fence Technology, 2022(6): 1006-1022.
[71] 张洪波, 邹杰, 刘波, 等.超视距空战攻击占位技术研究[C]//第四届中国航空兵器大会(2015). 2015: 1-13.
[72]张振宁, 高正红.机动性敏捷性参数对超视距空战效能的影响[J].飞行力学, 2018, 36(3):23-27
[73]乔鑫, 孔繁峨, 冯星, 等.单机超视距空战智能辅助决策方法[J].电光与控制, 2011, 18(6):9-15
[74] 罗继勋, 丁健, 胡朝晖.超视距空战战术实施的某些动态距离边界解算[J]. 火力与指挥控制, 2012(11): 130-132.
[75]陈正, 张扬, 李田科.超视距协同空战传感器、武器协同控制决策模型[J].火力与指挥控制, 2014, 39(1):90-94
[76] 吕超, 陈继祥, 辛旭光, 等.超视距空战中空空导弹攻击效果模型与仿真[J]. 兵工自动化, 2015(3): 37-40.
[77] 冉华明, 周锐, 吴江, 等.超视距空战中多机协同制导方法[J]. 北京航空航天大学学报, 2014(10): 1457-1462.
[78]蒲小勃, 缪炜星.超视距空战中机载雷达的使用策略研究[J].电光与控制, 2012, 19(6):1-4
[79] 章桂永, 胡波, 刘湘伟, 等.电子干扰对作战飞机超视距空战效能影响分析[J]. 电光与控制, 2011(11): 88-91, 95.
[80]高永, 向锦武.一种新的超视距空战威胁估计非参量法模型[J].系统仿真学报, 2006, 18(9):2570-2572
[81] 牛绿伟, 高晓光, 张坤, 等.划分超视距、近距的多机协同作战战术决策[J]. 西北工业大学学报, 2011(6): 971-977.
[82] 朱建益.空战中的威胁估计与态势评估研究[D/OL]. 陕西: 西安电子科技大学; 西安电子科技大学, 2013. DOI:10. 7666/d. D363347.
[83]荆献勇, 宁成达, 侯满义, 等.一种新的超视距空战目标威胁评估距离指标模型[J].火力与指挥控制, 2017, 42(8):19-23
[84] 徐超.基于遗传模糊树的先进战机协同空战决策技术研究[D]. 南京航空航天大学; 南京航空航天大学, 2020.
[85] RAO N, KASHYAP S, GOPALARATNAM G, 等.Situation and Threat Assessment in BVR Com-bat[C]//AIAA Guidance, Navigation, and Control Con-ference. 2011: 1-6.
[86] WANG X, YANG Z, LI X, 等.A Beyond Visual Range Air Combat Integrated Threat Assessment Method Based on Target Intention and Event[C]//ICGNC 2022: Advances in Guidance, Navigation and Control. 2022: 189-200.
[87] FLOYD M W, KARNEEB J, MOORE P.A Goal Rea-soning Agent for Controlling Uavs in Beyond-Visual-Range Air Combat[C]//26th International Joint Confer-ence on Artificial Intelligence (IJCAI-2017). Mel-bourne, Australia: International Joint Conferences on Artificial Intelligence, 2017: 4714-4722.
[88] ALFORD R, BORCK H, KARNEEB J.Active Behav-ior Recognition in Beyond Visual Range Air Com-bat[C]//The Third Annual Conference on Advances in Cognitive Systems 2015. Atlanta, Georgia, 2015: 1-14.
[89] BORCK H, KARNEEB J, ALFORD R.Case-Based Behavior Recognition in Beyond Visual Range Air Combat[C]//PRESS A. Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Re-search Society Conference. Hollywood, Florida, USA, 2015: 1-6.
[90]等.Online Hierar-chical Recognition Method for Target Tactical Inten-tion in Beyond-Visual-Range Air Combat[JOL][J].De-fence Technology, 2022, 18(8):1349-1361
[91]方君, 张立民, 徐涛, 等.超视距空战仿真中的策略识别[J].海军航空工程学院学报, 2017, 32(1):169-176
[92] 周铭哲.超视距多无人机协同空战任务规划方法研究[D]. 沈阳: 沈阳航空航天大学, 2019: 1-66.
[93] 刘钻东.基于目标意图预测的多无人机协同攻防智能决策[D]. 南京: 南京航空航天大学, 2020: 1-90.
[94] VAN DEN BROECK G, DRIESSENS K, RAMON J.Monte-Carlo Tree Search in Poker Using Expected Reward Distributions[C]//ZHOU Z H, WASHIO T. Ad-vances in Machine Learning. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 367-381.
[95] EKMEKCI O, SIRIN V.Learning Strategies for Oppo-nent Modeling in Poker[C]//Workshops at the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAIW 2013). Bellevue, Washington, 2013: 1-8.
[96] KLEIJ A A J van der.Monte Carlo Tree Search and Opponent Modeling Through Player Clustering in No-Limit Texas Hold’Em Poker[D]. Groningen: University of Groningen, 2010: 1-120.
[97] FEDCZYSZYN G, KOSZALKA L, POZNIAK-KOSZALKA I.Opponent Modeling in Texas Hold’em Poker[C]//NGUYEN N T, HOANG K, J?DRZEJOWICZ P. Computational Collective Intelli-gence. Technologies and Applications. Berlin, Heidel-berg: Springer Berlin Heidelberg, 2012: 182-191.
[98] 周志华.机器学习[M]. 4 版. 北京: 清华大学出版社, 2016: 1-445.
[99] MOHRI M, ROSTAMIZADEH A, TALWALKAR A.Foundations of Machine Learning[M]. 2 版. Cam-bridge: The MIT Press, 2018: 1-505.
[100] HUANG J.Building a Computer Poker Agent with Emphasis on Opponent Modeling[D]. Massachu-setts: Massachusetts Institute of Technology, 2011: 1-54.
[101]李翔, 姜晓红, 陈英芝, 等.基于手牌预测的多人无限注德州扑克博弈方法[J].计算机学报, 2018, 41(1):1-18
[102] 王栋, 姜龙亭, 寇雅楠, 等.智能空战实时辅助决策方法研究[M]. 北京: 电子工业出版社, 2020: 1-129.
[103] HASTIE T, TIBSHIRANI R, FRIEDMAN J.The Elements of Statistical Learning[M]. New York: Springer, 2009: 1-745. |