首页 >

基于显式对手建模的一对一超视距空战策略认知

胡振震1,陈少飞2,李鹏1,陈佳星1,张煜3,陈璟1   

  1. 1. 国防科技大学智能科学学院
    2. 国防科学技术大学 机电工程与自动化学院
    3. 湖南省长沙市国防科技大学智能科学学院智能科学技术系
  • 收稿日期:2024-05-21 修回日期:2024-09-16 出版日期:2024-09-20 发布日期:2024-09-20
  • 通讯作者: 陈少飞
  • 基金资助:
    国家自然科学基金面上项目

Opponent Strategy Cognition of One-on-one BVR Air Combat based on Explicit Opponent Modeling

  • Received:2024-05-21 Revised:2024-09-16 Online:2024-09-20 Published:2024-09-20

摘要: 为解释和分析对手的空战策略,针对现有空战策略认知手段欠缺的问题,提出了一种面向一对一超视距空战的显式对手建模方法。将超视距空战问题视作不完美信息博弈,将时空连续的空战过程离散化,抽象出不同类型的空战行动,引入决策点概念来聚合同分布信息集,定义关键决策变量来考察影响行动的关键因素,利用非参数化机器学习方法构建易于理解的对手策略模型,即决策点上行动概率分布随关键决策变量变化的模型。利用模拟超视距空战开展复盘分析表明,利用该方法构建策略模型相比现有方法能更全面地解释对手的行动和分析对手的弱点,可为策略优化和装备发展提供建议。

关键词: 显式对手建模, 一对一超视距空战, 博弈, 策略模型, 决策点

Abstract: In order to explain and analyze the opponent’s air combat strategy, an Explicit Opponent Modeling (EOM) method for one-on-one Beyond Visual Range (BVR) air combat is proposed to address the lack of existing tools of strategy cogni-tion. The BVR problem is regarded as an imperfect information game, the space-time continuous process of BVR is discretized, different types of air combat actions are abstracted, the concept of decision point is introduced to aggre-gate the information sets conforming to the same distribution, the key decision variables are defined to examine the key factors affecting the actions, and the non-parametric machine learning approach is used to construct an easy-to-understand opponent strategy model (i.e., the model of the action probability distribution varies with the key decision variable in decision points). The post-game analysis of the simulated BVR air combat shows that the constructed strat-egy model by the proposed method can explain the opponent’s actions and analyze the opponent’s weak points more comprehensively than existing methods, and can provide suggestions for strategy optimization and equipment devel-opment.

Key words: Explicit opponent modeling, One-on-one Beyond Visual Range air combat, Game, Strategy model, Decision point

中图分类号: