1 |
AGHAZIYARATI S, MORADI S, TALEBI H. Small infrared target detection using absolute average difference weighted by cumulative directional derivatives[J]. Infrared Physics and Technology, 2019, 101: 78-87.
|
2 |
MORADI S, MOALLEM P, SABAHI M F. Fast and robust small infrared target detection using absolute directional mean difference algorithm[J]. Signal Processing, 2020, 177: 107727.
|
3 |
PHILIP CHEN C L, LI H, WEI Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574-581.
|
4 |
HAN J H, MA Y, ZHOU B, et al. A robust infrared small target detection algorithm based on human visual system[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2168-2172.
|
5 |
WANG H, ZHOU L P, WANG L. Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared images[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 8508-8517.
|
6 |
ZHAO M X, CHENG L, YANG X, et al. TBC-Net: A real-time detector for infrared small target detection using semantic constraint[DB/OL]. arXiv preprint: 2001.05852, 2019.
|
7 |
DAI Y M, WU Y Q, ZHOU F, et al. Attentional local contrast networks for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9813-9824.
|
8 |
LI H Q, YANG J F, WANG R S, et al. ILNet: Low-level matters for salient infrared small target detection[DB/OL]. arXiv preprint: 2309.13646, 2023.
|
9 |
ZHANG T F, LI L, CAO S Y, et al. Attention-guided pyramid context networks for detecting infrared small target under complex background[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4250-4261.
|
10 |
LI B Y, XIAO C, WANG L G, et al. Dense nested attention network for infrared small target detection[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2023, 32: 1745-1758.
|
11 |
WANG C Y, WANG H, PAN P W. Local contrast and global contextual information make infrared small object salient again[DB/OL]. arXiv preprint: 2301.12093, 2023.
|
12 |
LIN J, LI S Y, ZHANG L, et al. IR-TransDet: Infrared dim and small target detection with IR-transformer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5004813.
|
13 |
王潇, 刘贞报. 基于多层多向Transformer的红外弱小目标检测[J]. 航空学报, 2024, 45(14): 629490.
|
|
XU X, LIU Z B. Infrared small target detection based on multi-layers multi-directions Transformer[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 629490 (in Chinese).
|
14 |
王强, 吴乐天, 王勇, 等. 基于关键点检测的红外弱小目标检测[J]. 航空学报, 2023, 44(10): 328173.
|
|
WANG Q, WU L T, WANG Y, et al. An infrared small target detection method based on key point[J]. Acta Aeronautica et Astronautica Sinica: 2023, 44(10):328173 (in Chinese).
|
15 |
CHEN C Y, GONG W G, CHEN Y L, et al. Object detection in remote sensing images based on a scene-contextual feature pyramid network[J]. Remote Sensing, 2019, 11(3): 339.
|
16 |
MOTTAGHI R, CHEN X J, LIU X B, et al. The role of context for object detection and semantic segmentation in the wild[C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 891-898.
|
17 |
JING D, ZHANG S, CONG R M, et al. Occlusion-aware Bi-directional guided network for light field salient object detection[C]∥Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 1692-1701.
|
18 |
TIAN X Q, LI S Y, YANG X, et al. Joint spatio-temporal features and sea background prior for infrared dim and small target detection[J]. Infrared Physics & Technology, 2023, 130: 104612.
|
19 |
ZUO Z, TONG X Z, WEI J Y, et al. AFFPN: Attention fusion feature pyramid network for small infrared target detection[J]. Remote Sensing, 2022, 14(14): 3412.
|
20 |
YAO J P, XIAO S Z, DENG Q Q, et al. An infrared maritime small target detection algorithm based on semantic, detail, and edge multidimensional information fusion[J]. Remote Sensing, 2023, 15(20): 4909.
|
21 |
YU J M, LI S, ZHOU S B, et al. MSIA-net: A lightweight infrared target detection network with efficient information fusion[J]. Entropy, 2023, 25(5): 808.
|
22 |
TORRALBA A, OLIVA A, CASTELHANO M S, et al. Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search[J]. Psychological Review, 2006, 113(4): 766-786.
|
23 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2015: 3431-3440.
|
24 |
RAHMAN M A, WANG Y. Optimizing intersection-over-union in deep neural networks for image segmentation[C]∥International Symposium on Visual Computing. Cham: Springer, 2016: 234-244.
|
25 |
PENG J C, LIU Y, TANG S Y, et al. PP-LiteSeg: A superior real-time semantic segmentation model[DB/OL]. arXiv preprint: 2204.02681, 2022.
|
26 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2999-3007.
|
27 |
HUI B, SONG Z, FAN H, et al. A dataset for infrared image dim-small aircraft target detection and tracking under ground/air background[J]. Science Data Bank, 2019, 5(12): 4.
|
28 |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
|
29 |
DAI Y M, WU Y Q, ZHOU F, et al. Asymmetric contextual modulation for infrared small target detection[C]∥2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2021: 949-958.
|
30 |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 9992-10002.
|
31 |
DESHPANDE S D, ER M H, VENKATESWARLU R, et al. Max-mean and max-median filters for detection of small targets[C]∥SPIE Proceedings", "Signal and Data Processing of Small Targets 1999, 1999: 74-83.
|
32 |
WEI Y T, YOU X G, LI H. Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recognition, 2016, 58: 216-226.
|
33 |
HAN J H, LIANG K, ZHOU B, et al. Infrared small target detection utilizing the multiscale relative local contrast measure[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 612-616.
|
34 |
HAN J H, MORADI S, FARAMARZI I, et al. A local contrast method for infrared small-target detection utilizing a tri-layer window[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10): 1822-1826.
|
35 |
SHI Y F, WEI Y T, YAO H, et al. High-boost-based multiscale local contrast measure for infrared small target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1): 33-37.
|
36 |
XIA C Q, LI X R, ZHAO L Y, et al. Infrared small target detection based on multiscale local contrast measure using local energy factor[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(1): 157-161.
|
37 |
HAN J H, MORADI S, FARAMARZI I, et al. Infrared small target detection based on the weighted strengthened local contrast measure[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(9): 1670-1674.
|
38 |
ZHANG F, LI C F, SHI L N. Detecting and tracking dim moving point target in IR image sequence[J]. Infrared Physics & Technology, 2005, 46(4): 323-328.
|
39 |
ZHANG H, ZHANG L, YUAN D, et al. Infrared small target detection based on local intensity and gradient properties[J]. Infrared Physics and Technology, 2018, 89: 88-96.
|