航空学报 > 2024, Vol. 45 Issue (19): 330381-330381   doi: 10.7527/S1000-6893.2024.30381

多功能多场景应用辐射定标光源光学系统设计

刘显著1, 徐达1(), 李栋2,3, 李林2,3, 刘石1, 王宇1, 郑佳伟1   

  1. 1.长春理工大学 光电工程学院,长春 130022
    2.空间智能控制技术全国重点实验室,北京 100190
    3.北京控制工程研究所,北京 100190
  • 收稿日期:2024-03-13 修回日期:2024-04-16 接受日期:2024-06-17 出版日期:2024-06-24 发布日期:2024-06-21
  • 通讯作者: 徐达 E-mail:418168115@qq.com
  • 基金资助:
    国家自然科学基金(62105042);空间智能控制技术实验室开放基金(HTKJ2022KL502004)

Design of optical system for multifunctional and multiscenario applications of radiation calibration light source

Xianzhu LIU1, Da XU1(), Dong LI2,3, Lin LI2,3, Shi LIU1, Yu WANG1, Jiawei ZHENG1   

  1. 1.School of Optoelectronic Engineering,Changchun University of Science and Technology,Changchun 130022,China
    2.Space Intelligent Control Laboratory,Beijing 100190,China
    3.Beijing Institute of Control Engineering,Beijing 100190,China
  • Received:2024-03-13 Revised:2024-04-16 Accepted:2024-06-17 Online:2024-06-24 Published:2024-06-21
  • Contact: Da XU E-mail:418168115@qq.com
  • Supported by:
    National Natural Science Foundation of China(62105042);Science and Technology on Space Intelligent Control Laboratory(HTKJ2022KL502004)

摘要:

目前空间遥感相机地面标定设备缺乏对各种谱线分布的精确模拟以及无法实现同时进行宽带和窄带的光谱辐射定标,导致空间遥感相机地面辐射定标精度低、宽带和窄带定标过程漫长复杂、无法实现多谱段光谱范围辐射定标测试。针对上述难题,提出一种基于前置准直扩束系统凹柱面光栅的光谱辐射定标系统的设计方法,针对凹柱面光栅的场曲特性,设计了楔形场曲补偿棱镜,并通过准直扩束系统减小系统的成像视场,提高凹柱面光栅分光系统的光谱分辨率,将整个系统的光谱分辨率提升了1倍多,由5 nm提升至2 nm。最后,对系统性能进行了测试,测试结果表明在宽带模式下,实现了500~900 nm光谱范围内3 000 K、6 400 K和9 000 K色温模拟,模拟误差优于5%;在窄带模式下,系统输出光束半峰宽度小于3 nm;在多谱段模式下,等能光谱的光谱模拟误差分别为545~600 nm处1.1%、630~690 nm处2.5%、680~725 nm处1.5%。所设计的系统满足空间相机、姿态导航系统以及遥感仪器的宽带、窄带辐射定标和多功能测试标定需求。

关键词: 光谱辐射定标, 光谱模拟, 凹柱面光栅, 辐射分光, 光学设计

Abstract:

Currently, ground calibration equipment for space remote sensing cameras lacks precise simulation of various spectral line distributions and cannot simultaneously perform both broadband and narrowband spectral radiometric calibration, resulting in low accuracy of ground radiometric calibration for space remote sensing cameras, a long and complex calibration process for both broadband and narrowband, and inability to conduct radiometric calibration tests across multiple spectral ranges. To address these challenges,a design method for a spectral radiometric calibration system based on a concave cylindrical grating with a pre-collimation and beam expansion system.Considering the field curvature characteristics of the concave cylindrical grating, a wedge-shaped field curvature compensation prism is designed. Additionally, the collimating and beam-expanding system is used to reduce the imaging field of view of the system, improving the spectral resolution of the concave cylindrical grating spectroscopic system. This enhancement doubles the spectral resolution of the entire system, from 5 nm to 2 nm. Finally, the system performance is tested. In the broadband mode, the system achieves color temperature simulations of 3 000 K, 6 400 K, and 9 000 K within the 500–900 nm spectral range, with a simulation error better than 5%. In the narrowband mode, the half-peak width of the system’s output beam is less than 3 nm. In the multispectral mode, the spectral simulation errors for equi-energy spectra are 1.1% in the 545–600 nm range, 2.5% in the 630–690 nm range, and 1.5% in the 680–725 nm range. This system meets the requirements for broadband and narrowband radiometric calibration and multifunctional testing and calibration of space cameras, attitude navigation systems, and remote sensing instruments.

Key words: spectral radiation calibration, spectral simulation, concave cylindrical grating, radiation spectroscopy, optical design

中图分类号: