收稿日期:2024-02-20
修回日期:2024-02-26
接受日期:2024-02-29
出版日期:2024-09-15
发布日期:2024-03-11
通讯作者:
王海峰
E-mail:wanghf611@163.com
Received:2024-02-20
Revised:2024-02-26
Accepted:2024-02-29
Online:2024-09-15
Published:2024-03-11
Contact:
Haifeng WANG
E-mail:wanghf611@163.com
摘要:
近年来无人机的协同作战概念受到广泛关注,美、俄、欧等竞相推进以强协同、高性能为特征的无人机装备及相关关键技术研发,使之成为航空装备领域的前沿热点。相较于传统无人机,高性能协同作战无人机在使用方式、任务能力和技术特征方面所表现的较明显差异引发了新讨论与再思考。本文回顾军用无人机的历史演进,探究人-机关系变革与无人机能力发展,分析大国竞争背景下新的无人机发展需求,梳理高性能协同作战无人机的能力需求和关键技术,就值得关注的自主与协同、分布与集中、性能与成本等设计取向进行讨论,提出对高性能协同作战无人机未来发展的认识和建议。
中图分类号:
王海峰. 高性能协同作战无人机的发展与思考[J]. 航空学报, 2024, 45(17): 530304.
Haifeng WANG. Development of high performance collaborative combat UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530304.
| 1 | 史文卿, 王海峰, 陈海昕. 战斗机—无人机编组协同系统需求捕获与验证[J]. 系统工程与电子技术, 2023, 45(1): 108-118. |
| SHI W Q, WANG H F, CHEN H X. Fighter-drone teaming system requirements elicitation and verification[J]. Systems Engineering and Electronics, 2023, 45(1): 108-118 (in Chinese). | |
| 2 | GUNZINGER M, REHBERG C, COHN J. An air force for an era of great power competition[R]. Washington, D. C.: Center for Strategic and Budgetary Assessments, 2019. |
| 3 | Министерство O, Ф Российской. Концепция применения комплексов с беспилотными летательными аппаратами в ВС РФ на период до 2025 года[R]. Москва: Министерство обороны Российской Федерации, 2009 (in Russian). |
| 4 | Bus Air. Future Combat Air System (FCAS): Shaping the future of air power[EB/OL]. (2017-08-15) [2024-01-27]. . |
| 5 | 李航航, 杨建元. 无人机作战使用与技术发展趋势[J]. 航空兵器, 2003, 10(4): 35-38. |
| LI H H, YANG J Y. Operational use and technical development trend of UAV[J]. Aero Weaponry, 2003, 10(4): 35-38 (in Chinese). | |
| 6 | 沈陶然, 桑隽永. 国外无人机装备发展现状及典型作战模式综述[J]. 新型工业化, 2018, 8(5): 94-97. |
| SHEN T R, SANG J Y. A review of the development status and typical operational mode of UAV equipment in foreign countries[J]. The Journal of New Industrialization, 2018, 8(5): 94-97 (in Chinese). | |
| 7 | UAS Task Force Airspace Integration Integrated Product Team. UAS airspace integration plan—Version 2.0 [R]. Washington, D. C.: Department of Defense, 2011. |
| 8 | Airforce Technology. Wing Loong unmanned aerial vehicle (UAV)[EB/OL]. (2021-02-02) [2024-01-27]. . |
| 9 | Office of the Secretary of Defense. Unmanned aerial vehicles roadmap: 2000—2025[R]. Washington, D. C.: Office of the Secretary of Defense, 2001. |
| 10 | Office of the Secretary of Defense. Unmanned aircraft systems roadmap: 2002—2027[R]. Washington, D. C.: Office of the Secretary of Defense, 2002. |
| 11 | Office of the Under Secretary of Defense (Acquisition Technology And Logistics). Unmanned systems integrated roadmap: FY2011—2036[R]. Washington, D. C.: Office of the Under Secretary of Defense, 2011. |
| 12 | DOWNS E. Jane’s avionics: 2010—2011[R]. Jane’s Pub, 2012. |
| 13 | DOWNS E. Jane’s avionics: 2006—2007[R]. Jane’s Pub, 2007. |
| 14 | Airforce Technology. nEUROn unmanned combat air vehicle (UCAV) demonstrator[EB/OL]. (2014-06-11)[2024-01-27]. . |
| 15 | Office of the Secretary of Defense. Unmanned aircraft systems roadmap: 2005—2030[R]. Washington, D. C.: Office of the Secretary of Defense, 2005. |
| 16 | Defense Science Board. Defense science board task force report: The role of autonomy in DoD systems[R]. Washington, D. C.: Defense Science Board, 2012. |
| 17 | USAF Office of the Chief Scientist. Autonomous horizons: System autonomy in the air force—A path to the future—volume I: Human-autonomy teaming[R]. Washington, D. C.: Department of the Air Force, 2015. |
| 18 | BLACK J, LYNCH A, GUSTAFSON K, et al. Multi-domain integration in defense[R]. Cambridge: Rand Corporation Europe, 2022. |
| 19 | O’ROURKE R. Renewed great power competition: Implications for defense-issues for congress[R]. Washington, D. C.: Congressional Research Service, 2021. |
| 20 | Air Superiority 2030 (AS 2030) Enterprise Capability Collaboration Team (ECCT). Air superiority 2030 flight plan[R]. Washington, D.C.: Department of the Air Force, 2016. |
| 21 | LEE C. The next frontier: UAVs for great power conflict: Part I, penetrating strike[R]. Mitchell: Mitchell Institute, 2022. |
| 22 | Air Force Research Laboratory. Munitions directorate overview to industry[EB/OL]. (2015-02-02) [2024-01-27]. !&&p=a7938444325d9af2JmltdHM9MTcwNjQwMDAwMCZpZ3VpZD0wN2Y5ZjJjOC02MjMwLTY2YTEtMWJhMC1mYzRhNjMxZTY3MjkmaW5zaWQ9NTE4MA&ptn=3&ver=2&hsh=3&fclid=07f9f2c8-6230-66a1-1ba0-fc4a631e6729&psq=munitions+directorate+overview+to+industry%3a10-AFRL-RW-BFI-PACA-2015&u=a1aHR0cHM6Ly93d3cuYWZybC5hZi5taWwvUlcv&ntb=1. |
| 23 | 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377. |
| YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377 (in Chinese). | |
| 24 | PENNY H. Beyond pixie dust: A framework for understanding and developing autonomy in unmanned aircraft[R]. Mitchell: Mitchell Institute, 2022. |
| 25 | USAF. Air force future operating concept: A view of the air force in 2035[EB/OL]. (2015-09-15) [2023-11-22]. . |
| 26 | Scientific Advisory Board DAF. Collaborative combat aircraft for next generation air dominance: SAF/PA Release 2022-0484[EB/OL] (2022-10-01) [2023-11-22]. . |
| 27 | OSBORN K. JADC2: Pentagon breaks through with networked wardrones, ships, stealth jets & tanks will attack together[EB/OL]. (2023-02-23) [2023-11-14]. . |
| 28 | CURTIS E. Lemay center for doctrine development and education. Reachback and distributed operation[EB/OL].(2016-07-20) [2023-11-14]. . |
| 29 | DARPA. Strategic technology office outlines vision for “mosaic warfare”[EB/OL]. (2017-08-04) [2023-12-03]. . |
| 30 | 远望智库. 俄乌冲突中俄乌双方无人机作战运用研究[R]. 远望报告, 2022. |
| Techxcope. Research on the usage of UCAVs in Russia-Ukraine conflict[R]. Techxcope Report, 2022 (in Chinese). | |
| 31 | HELFRICH E. General atomics’ Gambit drones to have different airframes with common ‘cores’[EB/OL]. (2022-09-22) [2023-10-05]. . |
| 32 | 魏中成, 王海峰, 袁兵, 等. 鸭式飞机矢量喷流对大迎角气动特性的影响[J]. 航空学报, 2020, 41(12): 124434. |
| WEI Z C, WANG H F, YUAN B, et al. Canard aircraft interactive behaviors between vectoring jet and aerodynamics at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124434 (in Chinese). | |
| 33 | 王海峰, 展京霞, 陈科, 等. 战斗机大迎角气动特性研究技术的发展与应用[J]. 空气动力学学报, 2022, 40(1): 1-25. |
| WANG H F, ZHAN J X, CHEN K, et al. Development and application of aerodynamic research technologies for fighters at high angle of attack[J]. Acta Aerodynamica Sinica, 2022, 40(1): 1-25 (in Chinese). | |
| 34 | 欧阳小平. 现代飞机液压技术[M]. 杭州: 浙江大学出版社, 2016. |
| OUYANG X P. Modern hydraulics for aircrafts[M]. Hangzhou: Zhejiang University Press, 2016 (in Chinese). | |
| 35 | Department of the Air Force. The United States air force artificial intelligence annex to the department of defense artificial intelligence strategy[R]. Washington, D. C.: Department of the Air Force, 2019. |
| 36 | POPE A P, IDE J S, MIĆOVIĆ D, et al. Hierarchical reinforcement learning for air combat at DARPA’s AlphaDogfight trials[J]. IEEE Transactions on Artificial Intelligence, 2023, 4(6): 1371-1385. |
| 37 | SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550: 354-359. |
| 38 | SUTTON R S, BARTO A. Reinforcement learning: An introduction[M]. Cambridge: The MIT Press, 2014. |
| 39 | 吴华兴. 基于Agent的人机组合行为建模关键技术研究[D]. 西安: 西北工业大学, 2016. |
| WU H X. Study on the key technologies in behavior representation for Agent-based pilot-aircraft combination[D].Xi’an: Northwestern Polytechnical University, 2016 (in Chinese). | |
| 40 | KAELBLING L P, LITTMAN M L, CASSANDRA A R. Planning and acting in partially observable stochastic domains[J]. Artificial Intelligence, 1998, 101(1-2): 99-134. |
| 41 | XU J W, ZHANG J, YANG L Y, et al. Autonomous decision-making for dogfights based on a tactical pursuit point approach[J]. Aerospace Science and Technology, 2022, 129: 107857. |
| 42 | 李全军, 张安. 航空电子综合火控系统驾驶员操作程序(POP)仿真[J]. 火力与指挥控制, 2005, 30(4): 71-74. |
| LI Q J, ZHANG A. Study on POP simulation for the avionics integrated fire control system[J]. Fire Control & Command Control, 2005, 30(4): 71-74 (in Chinese). | |
| 43 | LI T, QIN K Y, JIANG B, et al. Neural network-based robust bipartite consensus tracking control of multi-agent system with compound uncertainties and actuator faults[J]. Electronics, 2023, 12(11): 2524. |
| 44 | 王海峰. 战斗机保障性工程[M]. 北京: 国防工业出版社, 2023. |
| WANG H F. Fighter supportability engineering[M]. Beijing: National Defense Industry Press, 2023 (in Chinese). | |
| 45 | 陈志伟, 张罗庚, 方晓彤, 等. 装备体系可靠性概念、建模与预计方法研究[J]. 系统工程与电子技术, 2024, 46(6): 1975-1985. |
| CHEN Z W, ZHANG L G, FANG X T, et al. Reliability concepts, modeling, and prediction methods for weapon system of systems[J]. Systems Engineering and Electronics, 2024, 46(6): 1975-1985 (in Chinese). | |
| 46 | 王海峰. 战斗机故障预测与健康管理技术应用的思考[J]. 航空科学技术, 2020, 31(7): 3-11. |
| WANG H F. Research on application of prognostics and health management technology for fighter aircraft[J]. Aeronautical Science & Technology, 2020, 31(7): 3-11 (in Chinese). | |
| 47 | 王海峰, 王宏亮, 阳纯波. 航空装备保障智能化发展认识与探讨[J]. 测控技术, 2020, 39(12): 1-9, 27. |
| WANG H F, WANG H L, YANG C B. Understanding and discussion on intelligence-based aviation materiel support development[J]. Measurement & Control Technology, 2020, 39(12): 1-9, 27 (in Chinese). | |
| 48 | 张文宇. 分布式作战与其中的航空装备[EB/OL]. (2018-09-06) [2023-11-14]. . |
| ZHANG W Y. Distributed combat with its airborne equipment[EB/OL]. (2018-09-06) [2023-11-14]. (in Chinese). |
| [1] | 虞翔宇, 李文, 严杰, 梁世哲. 无人机液氢燃料电池热管理系统仿真研究[J]. 航空学报, 2025, 46(9): 630964-630964. |
| [2] | 杨芃芊, 陈禹彤, 刘俊辉, 杨杰豪, 单家元, 孙士珺. 串列翼货运无人机大攻角气动与操稳特性[J]. 航空学报, 2025, 46(9): 131056-131056. |
| [3] | 李荣祖, 刘莉, 杨盾. 基于多源域融合代理模型的氢能无人机优化设计[J]. 航空学报, 2025, 46(9): 630979-630979. |
| [4] | 万开方, 吴志林, 武韫晖, 强皓植, 吴艺博, 李波. 拒止环境下基于深度强化学习的多无人机协同定位[J]. 航空学报, 2025, 46(8): 331024-331024. |
| [5] | 姜凌峰, 李新凯, 张海, 李涵玮, 张宏立. 基于改进TD3算法的无人机动态环境无地图导航[J]. 航空学报, 2025, 46(8): 331035-331035. |
| [6] | 向锦武, 马凯, 阚梓, 李道春, 郑可欣, 陈汉轩. 氢能源无人机关键技术研究进展[J]. 航空学报, 2025, 46(5): 531603-531603. |
| [7] | 丁奇帅, 雷帮军, 吴正平. 基于孪生网络的轻量型无人机单目标跟踪算法[J]. 航空学报, 2025, 46(4): 330925-330925. |
| [8] | 吴付杰, 王博文, 齐静雅, 曹铭智, 桑英俊, 李晟, 张玉珍, 陈钱, 左超. 机载多孔径全景图像合成技术研究进展[J]. 航空学报, 2025, 46(3): 630505-630505. |
| [9] | 马诺, 卫社春, 孟军辉, 刘清洋, 雷宇声. 考虑减速伞作用的无人机内埋舱体分离流场特性与动力学[J]. 航空学报, 2025, 46(3): 130755-130755. |
| [10] | 吴一全, 童康. 基于深度学习的无人机航拍图像小目标检测研究进展[J]. 航空学报, 2025, 46(3): 30848-030848. |
| [11] | 王辰, 魏才盛, 殷泽阳, 靳锴, 李星辰. 考虑信道资源约束的多无人机航迹与通信策略协同规划[J]. 航空学报, 2025, 46(18): 331837-331837. |
| [12] | 郑忆, 程向红, 唐兴邦, 曹毅. 基于改进ReDet的航拍绝缘子及其缺陷定向检测算法[J]. 航空学报, 2025, 46(18): 331825-331825. |
| [13] | 陈秋实, 高精隆, 王萌, 边文昆, 韩昊峻. 无人机卫星导航系统抗干扰技术综述[J]. 航空学报, 2025, 46(17): 331797-331797. |
| [14] | 姜筱巍, 吴一全. 无人机航拍图像拼接方法研究进展[J]. 航空学报, 2025, 46(17): 331799-331799. |
| [15] | 赵江, 皮明豪, 田栢苓, 池沛, 王英勋. 面向多目标跟踪的集群无人机自组织共识决策方法[J]. 航空学报, 2025, 46(16): 331635-331635. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学


