航空学报 > 2024, Vol. 45 Issue (23): 329844-329844   doi: 10.7527/S1000-6893.2024.29844

考虑时间约束的解析再入滑翔制导

王培臣1, 闫循良1(), 李新国1, 王子安2   

  1. 1.西北工业大学 航天学院 陕西省空天飞行器设计重点实验室,西安 710072
    2.中国运载火箭技术研究院 研发中心,北京 100076
  • 收稿日期:2023-11-07 修回日期:2023-12-04 接受日期:2024-01-05 出版日期:2024-01-26 发布日期:2024-01-24
  • 通讯作者: 闫循良 E-mail:xly_nwpu@126.com
  • 基金资助:
    国家自然科学基金(11602296);陕西省自然科学基础研究计划(2019JM-434);智控实验室开放基金资助(2023-ZKSYS-KF04-02)

Reentry glide analytical guidance considering time constraints

Peichen WANG1, Xunliang YAN1(), Xinguo LI1, Zian WANG2   

  1. 1.Shaanxi Aerospace Flight Vehicle Design Key Laboratory,School of Astronautics,Northwestern Polytechnical Uni?versity,Xi’an 710072,China
    2.Research Development Center,China Academy of Launch Vehicle Technology,Beijing 100076,China
  • Received:2023-11-07 Revised:2023-12-04 Accepted:2024-01-05 Online:2024-01-26 Published:2024-01-24
  • Contact: Xunliang YAN E-mail:xly_nwpu@126.com
  • Supported by:
    National Natural Science Foundation of China(11602296);Natural Science Basis Research Plan in Shaanxi Province(2019JM-434);The Open Fund of the Intelligent Control Laboratory(2023-ZKSYS-KF04-02)

摘要:

针对滑翔飞行器时间可控再入制导问题,提出了一种基于阻力加速度-能量剖面解析设计、在线自适应解析更新及鲁棒跟踪算法的时间可控再入制导方法。首先,设计了基于走廊边界双参数插值的多段光滑阻力加速度标准剖面,并给出了终端当地弹道倾角等多种约束的施加方法;推导了考虑地球自转影响的待飞时间、航程解析预测表达式,进而通过校正双剖面参数完成标准剖面的高精度解析设计。随后,设计了一种基于双/单参数顺序求解模式的阻力加速度剖面在线自适应更新策略,可根据实时态势进行两种剖面更新算法的自适应切换,完成待飞剖面的自适应解析更新,同时满足终端能量、当地弹道倾角、航程及飞行时间约束要求。在此基础上,设计了标准剖面跟踪算法和时间可控再入解析制导算法框架,实现了制导指令的在线快速生成。最终,以CAV-H再入滑翔为例进行仿真,验证了本文方法的有效性、快速性及多任务适用性;与现有基于解析预测校正的方法相比,所提方法具有较高的时间、航程及终端状态的控制精度;与现有基于标准剖面的方法相比,所提方法具有较高的计算效率和较大的时间可调范围。

关键词: 再入滑翔, 解析再入制导, 时间约束, 阻力加速度剖面, 解析预测校正, 剖面自适应更新

Abstract:

A time controllable entry guidance method is proposed based on analytical design of drag-energy profile, online adaptive analytical update, and robust tracking algorithm. Firstly, a multi-segment smooth drag-energy standard profile based on corridor boundary dual parameter interpolation is designed, and multiple constraints including terminal flight path angle are applied. Then, the analytical predictive formulas for time and range to-go considering the influence of earth rotation are derived, and high-precision analytical design of the standard profile is completed by correcting the double parameters of the profile. Subsequently, a drag-energy profile online adaptive update strategy based on dual/single parameter sequential solution mode is designed, which can adaptively switch between two profile update algorithms based on real-time situation, and complete analytical update of the remaining profile adaptively, satisfying the constraints of terminal energy, flight path angle, range and flight time. On this basis, a standard profile tracking algorithm and time controllable entry analytical guidance algorithm framework are designed, achieving online rapid generation of guidance commands. Finally, using CAV-H entry glide as an example, simulation is conducted to verify the effectiveness, computational efficiency, and multi-task applicability of the proposed method. Compared with current methods based on analytical predictor-corrector guidance, the proposed method has higher time, range and terminal states control accuracy. Compared with existing methods based on standard profile, the proposed method has higher computational efficiency and larger adjustable time range.

Key words: entry glide, analytical entry guidance, time constraint, drag acceleration profile, analytical predictor-corrector, profile adaptive update

中图分类号: