1 |
钟文丽, 赵金辉, 杨筱. 推进颠覆性技术发展是大国博弈的战略选择[J]. 国防科技, 2018, 39(5): 43-47.
|
|
ZHONG W L, ZHAO J H, YANG X. Promoting disruptive technology development is a strategic choice for big powers[J]. Defense Technology Review, 2018, 39(5): 43-47 (in Chinese).
|
2 |
曲冠楠, 陈凯华, 陈劲. 颠覆性技术创新:理论源起、整合框架与发展前瞻[J]. 科研管理, 2023, 44(9): 1-9.
|
|
QU G N, CHEN K H, CHEN J. Disruptive technovation: origins, integrated framework, and prospects[J]. Science Research Management, 2023, 44(9): 1-9 (in Chinese).
|
3 |
刘安蓉, 李莉, 曹晓阳, 等. 颠覆性技术概念的战略内涵及政策启示[J]. 中国工程科学, 2018, 20(6): 7-13.
|
|
LIU A R, LI L, CAO X Y, et al. The strategic connotation and policy enlightenment of the concept of disruptive technology[J]. Strategic Study of CAE, 2018, 20(6): 7-13 (in Chinese).
|
4 |
苏鹏, 苏成, 潘云涛. 颠覆性技术识别方法发展现状及启示[J]. 图书情报工作, 2019, 63(20): 129-138.
|
|
SU P, SU C, PAN Y T. Overview and considerations on disruptive technology identification method[J]. Library and Information Service, 2019, 63(20): 129-138 (in Chinese).
|
5 |
荆象新, 锁兴文, 耿义峰. 颠覆性技术发展综述及若干启示[J]. 国防科技, 2015, 36(3): 11-13.
|
|
JING X X, SUO X W, GENG Y F. Review and revelation on disruptive technology development[J]. National Defense Science & Technology, 2015, 36(3): 11-13 (in Chinese).
|
6 |
王志勇, 党晓玲, 刘长利, 等. 颠覆性技术的基本特征与国外研究的主要做法[J]. 国防科技, 2015, 36(3): 14-17, 22.
|
|
WANG Z Y, DANG X L, LIU C L, et al. Characteristics of disruptive technology and international research survey[J]. National Defense Science & Technology, 2015, 36(3): 14-17, 22 (in Chinese).
|
7 |
王超, 许海云, 方曙. 颠覆性技术识别与预测方法研究进展[J]. 科技进步与对策, 2018, 35(9): 152-160.
|
|
WANG C, XU H Y, FANG S. Progress of approaches for identification and forecasting of disruptive technologies[J]. Science & Technology Progress and Policy, 2018, 35(9): 152-160 (in Chinese).
|
8 |
黄鲁成, 成雨, 吴菲菲, 等. 关于颠覆性技术识别框架的探索[J]. 科学学研究, 2015, 33(5): 654-664.
|
|
HUANG L C, CHENG Y, WU F F, et al. Study on identification framework of disruptive technology[J]. Studies in Science of Science, 2015, 33(5): 654-664 (in Chinese).
|
9 |
宁朝山. 工业革命演进与新旧动能转换: 基于历史与逻辑视角的分析[J]. 宏观经济管理, 2019(11): 18-27.
|
|
NING C S. The evolution of the industrial revolution and replacing old growth drivers with new ones—an analysis from the historical and logical perspective[J]. Macroeconomic Management, 2019(11): 18-27 (in Chinese).
|
10 |
龚淑林. 美国第二次工业革命及其影响[J]. 南昌大学学报(人文社会科学版), 1988, 19(1): 67-74, 101.
|
|
GONG S L. The second American industrial revolution and its influence[J]. Journal of Nanchang University (Social Science), 1988, 19(1): 67-74, 101 (in Chinese).
|
11 |
游翰霖, 陈方舟, 成清. 从大国博弈视角解读与应对第三次抵消战略[J]. 国防科技, 2017, 38(4): 88-93.
|
|
YOU H L, CHEN F Z, CHENG Q. Understanding and coping with the Third Offset Strategy from the perspective of superpower games[J]. National Defense Science & Technology, 2017, 38(4): 88-93 (in Chinese).
|
12 |
刘一鸣, 石海明. 技术制胜: 美军第三次“抵消战略” 评析[J]. 指挥与控制学报, 2016, 2(2): 167-171.
|
|
LIU Y M, SHI H M. Technology subduing: analysis of the U.S. third “offset strategy”[J]. Journal of Command and Control, 2016, 2(2): 167-171 (in Chinese).
|
13 |
程不时. 创造了“王牌飞行员” 的机枪协调器[J]. 航空知识, 2006(6): 60.
|
|
CHENG B S. Created the machine Gun coordinator of the “Ace Pilot”[J]. Aerospace Knowledge, 2006(6): 60 (in Chinese).
|
14 |
杨树谦. 精确制导技术发展现状与展望[J]. 航天控制, 2004, 22(4): 17-20.
|
|
YANG S Q. Development and prospect of PGM technology[J]. Aerospace Control, 2004, 22(4): 17-20 (in Chinese).
|
15 |
梁薇, 张科. 精确制导武器发展及其关键技术[J]. 火力与指挥控制, 2008, 33(12): 5-7, 12.
|
|
LIANG W, ZHANG K. Development and key technologies of precise-guidance weapon[J]. Fire Control and Command Control, 2008, 33(12): 5-7, 12 (in Chinese).
|
16 |
朱长征. 飞机的隐身技术现状及发展趋势[J]. 航天电子对抗, 2001, 17(6): 42-45.
|
|
ZHU C Z. Present situation and development trend of stealth technology of aircraft[J]. Aerospace Electronic Warfare, 2001, 17(6): 42-45 (in Chinese).
|
17 |
樊会涛, 闫俊. 空战体系的演变及发展趋势[J]. 航空学报, 2022, 43(10): 527397.
|
|
FAN H T, YAN J. Evolution and development trend of air combat system[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527397 (in Chinese).
|
18 |
陈辛, 张俊宝. 空战模式演变与隐身空战形态发展分析[J]. 航空兵器, 2022, 29(3): 1-7.
|
|
CHEN X, ZHANG J B. Analysis on the evolution of air combat mode and the development of stealth air combat form[J]. Aero Weaponry, 2022, 29(3): 1-7 (in Chinese).
|
19 |
樊会涛, 张蓬蓬. 空空导弹面临的挑战[J]. 航空兵器, 2017, 24(2): 3-7.
|
|
FAN H T, ZHANG P P. The challenges for air-to-air missile[J]. Aero Weaponry, 2017, 24(2): 3-7 (in Chinese).
|
20 |
梁晓庚, 田宏亮. 临近空间高超声速飞行器发展现状及其防御问题分析[J]. 航空兵器, 2016, 23(4): 3-10.
|
|
LIANG X G, TIAN H L. Analysis of the development status and the defense problem of near space hypersonic vehicle[J]. Aero Weaponry, 2016, 23(4): 3-10 (in Chinese).
|
21 |
鲜勇, 李扬. 人工智能技术对未来空战武器的变革与展望[J]. 航空兵器, 2019, 26(5): 26-31.
|
|
XIAN Y, LI Y. Revolution and prospect of artificial intelligence technology for air combat weapons in the future[J]. Aero Weaponry, 2019, 26(5): 26-31 (in Chinese).
|
22 |
刘代军, 王超磊. 空空导弹智能化技术的发展与展望[J]. 航空兵器, 2019, 26(1): 25-29.
|
|
LIU D J, WANG C L. Development and prospect of air-to-air missile intelligentization[J]. Aero Weaponry, 2019, 26(1): 25-29 (in Chinese).
|
23 |
程运江, 张程, 赵日, 等. 人工智能的发展及其在未来战争中的影响与应用思考[J]. 航空兵器, 2019, 26(1): 58-62.
|
|
CHENG Y J, ZHANG C, ZHAO R, et al. Development of artificial intelligence and thoughts on its influence and application in the future war[J]. Aero Weaponry, 2019, 26(1): 58-62 (in Chinese).
|
24 |
乔绅. 超材料与带状线相结合的高Q滤波结构设计[J]. 航空兵器, 2020, 27(3): 79-82.
|
|
QIAO S. Design of high-Q filter structure based on combination of metamaterial and strip line[J]. Aero Weaponry, 2020, 27(3): 79-82 (in Chinese).
|
25 |
郭正玉, 毕冉, 马征峥, 等. 智能隐身材料在空空导弹结构设计中的应用展望[J]. 航空兵器, 2023, 30(2): 21-30.
|
|
GUO Z Y, BI R, MA Z Z, et al. Application prospect of intelligent stealth materials in air-to-air missile structure design[J]. Aero Weaponry, 2023, 30(2): 21-30 (in Chinese).
|
26 |
陈敏, 张纪元, 唐海龙, 等. 自适应循环发动机总体设计技术探讨[J]. 航空动力学报, 2022, 37(10): 2046-2058.
|
|
CHEN M, ZHANG J Y, TANG H L, et al. Discussion on overall performance design technology of adaptive cycle engine[J]. Journal of Aerospace Power, 2022, 37(10): 2046-2058 (in Chinese).
|
27 |
TRIMBLE S. DARPA aims gambit missile project at fourth-gen fighters [EB/OL]. (2022-08)[2023-11-20]. .
|
28 |
刘艳鹏, 龚安民, 丁鹏, 等. 基于言语想象的脑机交互关键技术[J]. 生物医学工程学杂志, 2022, 39(3): 596-611.
|
|
LIU Y P, GONG A M, DING P, et al. Key technology of brain-computer interaction based on speech imagery[J]. Journal of Biomedical Engineering, 2022, 39(3): 596-611 (in Chinese).
|
29 |
魏士松. 基于脑-机接口的飞行器虚拟现实模拟驾驶系统研究[D]. 南京: 南京航空航天大学, 2021.
|
|
WEI S S. Research on virtual reality simulation driving system of aircraft based on brain-computer interface[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese).
|
30 |
李茜. 2022高超声速技术进展[J]. 航空动力, 2023(1): 15-18.
|
|
LI Q. Progress of hypersonic technology in 2022[J]. Aerospace Power, 2023(1): 15-18 (in Chinese).
|
31 |
陈龙, 宋庆国, 廖孟豪. 国防领域航空颠覆性技术识别[J]. 航空科学技术, 2022, 33(5): 37-43.
|
|
CHEN L, SONG Q G, LIAO M H. Identifying disruptive technologies in military aviation for defense[J]. Aeronautical Science & Technology, 2022, 33(5): 37-43 (in Chinese).
|
32 |
赵鸿燕, 周丽. 国外高功率微波武器发展研究[J]. 航空兵器, 2023, 30(4): 42-48.
|
|
ZHAO H Y, ZHOU L. Research on the development of high-power microwave weapon abroad[J]. Aero Weaponry, 2023, 30(4): 42-48 (in Chinese).
|
33 |
范晋祥, 陈晶华. 美军机载武器的新发展[J]. 航空兵器, 2020, 27(5): 13-22.
|
|
FAN J X, CHEN J H. New development of American airborne weapons[J]. Aero Weaponry, 2020, 27(5): 13-22 (in Chinese).
|
34 |
吴涛涛, 王茜, 武晓龙. 定向能武器在无人化战争中的制胜机理及运用特点[J]. 国防科技, 2022, 43(5): 137-142.
|
|
WU T T, WANG Q, WU X L. Winning mechanism and application characteristics of directed energy weapons in unmanned warfare[J]. National Defense Technology, 2022, 43(5): 137-142 (in Chinese).
|