收稿日期:
2023-10-04
修回日期:
2023-10-08
接受日期:
2023-10-10
出版日期:
2024-03-15
发布日期:
2023-10-13
通讯作者:
熊亮
E-mail:xixiangxl@126.com
基金资助:
Liang XIONG1,2(), Rui ZHANG1, Yanzhi LONG2
Received:
2023-10-04
Revised:
2023-10-08
Accepted:
2023-10-10
Online:
2024-03-15
Published:
2023-10-13
Contact:
Liang XIONG
E-mail:xixiangxl@126.com
Supported by:
摘要:
飞行器飞行大气数据传感技术是现代飞行器全包线飞行控制、通信导航和武器打击轨迹精确控制获取飞行大气参数测量的关键或重要途径。回顾了飞行器飞行大气数据传感技术发展历程,阐述了技术跨代发展的驱动因素和系统架构设计、压力受感与传递转换、参数解算模型设计、复杂气象环境适应性设计、系统校准与飞行验证五项关键技术解决情况,分析了现有技术的不足与缺陷,从现代飞行器发展与应用需要出发,结合工程技术研究成果,提出了飞行器飞行大气数据传感技术未来重点发展方向。
中图分类号:
熊亮, 张睿, 龙彦志. 飞行器飞行大气数据传感技术发展现状与展望[J]. 航空学报, 2024, 45(5): 529670-529670.
Liang XIONG, Rui ZHANG, Yanzhi LONG. Development status and prospects of flight air data sensing technology for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529670-529670.
1 | 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377. |
YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377 (in Chinese). | |
2 | 史彦斌,高宪军,王远达.航空电子系统导论[M].北京:国防工业出版社,2019: 254-258. |
SHI Y B, GAO X J, WANG Y D. Introduction to avionics systems[M]. Beijing: National Defense Industry Press, 2019: 254-258 (in Chinese). | |
3 | 吴文海, 高阳, 汪节. 飞行控制系统的发展历程、现状与趋势[J]. 飞行力学, 2018, 36(4): 1-5, 10. |
WU W H, GAO Y, WANG J. Development course, status and trend of flight control system[J]. Flight Dynamics, 2018, 36(4): 1-5, 10 (in Chinese). | |
4 | 顾诵芬, 史超礼. 世界航空发展史[M]. 郑州: 河南科学技术出版社, 1998. |
GU S F, SHI C L. The history of the world aviation development[M]. Zhengzhou: Henan Science and Technology Press, 1998 (in Chinese). | |
5 | 秦伟伟, 刘刚, 赵欣. 临近空间高超声速飞行器控制系统基本原理[M]. 北京: 北京航空航天大学出版社, 2019: 24-26. |
QIN W W, LIU G, ZHAO X. Basic principle of control system for near-space hypersonic vehicle[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2019: 24-26 (in Chinese). | |
6 | 张怀根, 何强. 机载雷达抗干扰技术现状与发展趋势[J]. 现代雷达, 2021, 43(3): 1-7. |
ZHANG H G, HE Q. Development and prospect of airborne radar anti-jamming technique[J]. Modern Radar, 2021, 43(3): 1-7 (in Chinese). | |
7 | 宋述杰. 虚拟传感器研究[D]. 西安: 西北工业大学, 2004: 1-8. |
SONG S J. Research on virtual sensor[D].Xi’an: Northwestern Polytechnical University, 2004: 1-8 (in Chinese). | |
8 | 李睿佳, 李荣冰, 刘建业, 等. 跨音速大气/惯性攻角两步融合算法[J]. 应用科学学报, 2010, 28(1): 99-105. |
LI R J, LI R B, LIU J Y, et al. Two-step fusion algorithm for ADS/INS angles of attack on transonic flight[J]. Journal of Applied Sciences, 2010, 28(1): 99-105 (in Chinese). | |
9 | 马航帅, 雷廷万, 李荣冰, 等. 大攻角下基于信息融合的攻角/侧滑角估计方法[J]. 电光与控制, 2012, 19(8): 1-5. |
MA H S, LEI T W, LI R B, et al. Estimation method for angle-of-attack and sideslip angle based on information fusion at high angle of attack[J]. Electronics Optics & Control, 2012, 19(8): 1-5 (in Chinese). | |
10 | 马航帅. 基于虚拟大气的大攻角大气数据估计技术研究[D]. 南京: 南京航空航天大学, 2012: 1-59. |
MA H S. Research on the estimation technology of air data based on virtual air data at high angle of attack[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 1-59 (in Chinese). | |
11 | 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013. |
SANG J H. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013 (in Chinese). | |
12 | 魏小龙, 韩欣珉, 李益文. 动态可调等离子体隐身技术[M]. 北京: 科学出版社, 2021: 13-15. |
WEI X L, HAN X M, LI Y W. Dynamic adjustable plasma stealth technology[M]. Beijing: Science Press, 2021: 13-15 (in Chinese). | |
13 | 葛志闪. 飞翼布局无人机控制律设计[D]. 西安: 西北工业大学, 2007: 1-83. |
GE Z S. Design of control law for UAV with flying wing layout[D].Xi’an: Northwestern Polytechnical University, 2007: 1-83 (in Chinese). | |
14 | 李永丰, 吕永玺, 史静平, 等. 深度确定性策略梯度和预测相结合的无人机空战决策研究[J]. 西北工业大学学报, 2023, 41(1): 56-64. |
LI Y F, LYU Y X, SHI J P, et al. UAV’s air combat decision-making based on deep deterministic policy gradient and prediction[J]. Journal of Northwestern Polytechnical University, 2023, 41(1): 56-64 (in Chinese). | |
15 | 张羽白, 肖成方, 邹俊俊, 等. 飞翼布局无人机控制律设计[J]. 测控技术, 2021, 40(1): 123-131. |
ZHANG Y B, XIAO C F, ZOU J J, et al. Design of flight control law for a flying-wing UAV[J]. Measurement & Control Technology, 2021, 40(1): 123-131 (in Chinese). | |
16 | 范力元, 张浩哲, 徐钊, 等. 基于安全飞行走廊的无人机密集障碍规避算法[J]. 西北工业大学学报, 2022, 40(6): 1288-1296. |
FAN L Y, ZHANG H Z, XU Z, et al. A dense obstacle avoidance algorithm for UAVs based on safe flight corridor[J]. Journal of Northwestern Polytechnical University, 2022, 40(6): 1288-1296 (in Chinese). | |
17 | 甄子洋, 朱平, 江驹, 等. 基于自适应控制的近空间高超声速飞行器研究进展[J]. 宇航学报, 2018, 39(4): 355-367. |
ZHEN Z Y, ZHU P, JIANG J, et al. Research progress of adaptive control for hypersonic vehicle in near space[J]. Journal of Astronautics, 2018, 39(4): 355-367 (in Chinese). | |
18 | 吴宏鑫, 孟斌. 高超声速飞行器控制研究综述[J]. 力学进展, 2009, 39(6): 756-765. |
WU H X, MENG B. Review on the control of hypersonic flight vehicles[J]. Advances in Mechanics, 2009, 39(6): 756-765 (in Chinese). | |
19 | 孙长银, 穆朝絮, 余瑶. 近空间高超声速飞行器控制的几个科学问题研究[J]. 自动化学报, 2013, 39(11): 1901-1913. |
SUN C Y, MU C X, YU Y. Some control problems for near space hypersonic vehicles[J]. Acta Automatica Sinica, 2013, 39(11): 1901-1913 (in Chinese). | |
20 | 丁智坚, 周欢, 吴东升, 等. 嵌入式大气数据测量系统技术研究进展[J]. 宇航学报, 2019, 40(3): 247-257. |
DING Z J, ZHOU H, WU D S, et al. Review of flush air data sensing system[J]. Journal of Astronautics, 2019, 40(3): 247-257 (in Chinese). | |
21 | CARY J, KEENER E R. Flight evaluation of the X-15 ball-nose flow-direction sensor as an air-data system: NASA TN D-2923[R]. Washington, D.C.: NASA, 1965. |
22 | ROW P, FISCHEL J. Operational flight-test experience with the X-15 airplane[C]∥Proceedings of the Space Flight Testing Conference. Reston: AIAA, 1963. |
23 | WOESTE T. Shuttle entry air data system-an experimental investigation of calibration for ascent flight[C]∥Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
24 | SIEMERS P M, PAUL M, HENRY M W,et al . Shuttle entry air data system (SEADS)-flight verification of an advanced air data system concept: AIAA 88-2104[R]. Reston: AIAA, 1988. |
25 | HENRY M, WOLF H, SIEMERS P. An evaluation of Shuttle entry air data system (SEADS) flight pressures-comparisons with wind tunnel and theoretical predictions[C]∥Proceedings of the 15th Aerodynamic Testing Conference. Reston: AIAA, 1988. |
26 | WHITMORE S, MOES T, LARSON T J. Preliminary results from a subsonic high angle-of-attack flush airdata sensing (HI-FADS) system: Design, calibration, and flight test evaluation: AIAA-90-0232 [R]. Reston: AIAA, 1990. |
27 | WHITMORE S A, MOES T R, LEONDES C T. Development of a pneumatic high-angle-of-attack flush airdata sensing (HI-FADS) system[M]∥Control and Dynamic Systems. Amsterdam: Elsevier, 1992: 453-511. |
28 | WEISS S. Comparing three algorithms for modeling flush air data systems[C]∥Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. |
29 | WHITMORE S, COBLEIGH B, HAERING E Jr. Design and calibration of the X-33 flush airdata sensing (FADS) system[C]∥Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998. |
30 | COBLEIGH B, WHITMORE S, HAERING E Jr, et al. Flush airdata sensing (FADS) system calibration procedures and results for blunt forebodies[C]∥Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999. |
31 | ELLSWORTH J, WHITMORE S. Reentry air data for a sub-orbital spacecraft based on X-34 design[C]∥Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
32 | ELLSWORTH J C, WHITMORE S A. Simulation of a flush air-data system for transatmospheric vehicles[J]. Journal of Spacecraft and Rockets, 2008, 45(4): 716-732. |
33 | BAUMANN E, PAHLE J W, DAVIS M C, et al. X-43A flush airdata sensing system flight-test results[J]. Journal of Spacecraft and Rockets, 2010, 47(1): 48-61. |
34 | TAKAKI R, TAKIZAWA M, TAKAKI R, et al. ADS measurement of HYFLEX (HYpersonic FLight EXperiment)[C]∥Proceedings of the 35th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1997. |
35 | THEIL S, SCHLOTTERER M, HALLMANN M, et al. Hybrid navigation system for the SHEFEX-2 mission[C]∥AIAA Guidance, Navigation and Control Conference and Exhibit. Reston: AIAA, 2008. |
36 | 岳亚洲, 李彬, 雷宏杰. 激光大气运动参数测量技术研究进展及展望(特邀)[J]. 光子学报, 2022, 51(4): 9-23. |
YUE Y Z, LI B, LEI H J. Advances and prospects of laser measurement technology for air motion parameters(invited)[J]. Acta Photonica Sinica, 2022, 51(4): 9-23 (in Chinese). | |
37 | CALDWELL L M, TANG S Y, O’BRIEN M. Optical air data systems and methods: US7760339[P]. 2010-07-20. |
38 | CALDWELL L M, O’BRIEN M J, WEIMER C S, et al. Optical air data systems and methods: US6894768[P]. 2005-05-17. |
39 | CALDWELL L M, TANG S Y, ACOTT P E, et al. Optical air data systems and methods: US8072584[P]. 2011-12-06. |
40 | 孙友师. 光学大气数据测量系统的发展研究[J]. 测控技术, 2010, 29: 6-9. |
SUN Y S. Progress of optical air data measurement systems[J]. Measurement & Control Technology,2010,29:6-9 (in Chinese). | |
41 | BOGUE R K. Recent flight-test results of optical airdata techniques[C]∥SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale: SAE International, 1992. |
42 | MAMIDIPUDI P, DAKIN E A, DAKIN D C, et al. LandSafe precision flight instrumentation system: The DVE solution[C]∥Procceeding SPIE,Airborne ISR Systems and Applications, 2012 |
43 | 秋路, 屈飞舟, 惠辉辉. 机载激光测速技术在大气数据校准领域的应用研究[J]. 航空科学技术, 2019, 30(2): 32-36. |
QIU L, QU F Z, HUI H H. Research on applications of airborne laser anemometry in air data calibration[J]. Aeronautical Science & Technology, 2019, 30(2): 32-36 (in Chinese). | |
44 | ROEDNEY K B, HENK W J. Optical air flow measurements in flight: NASA/TP-2004-210735 [R]. Washington, D.C.: NASA, 2004. |
45 | VERBEEK M, JENTINK H. Optical air data system flight testing: NLR-TP-2012-068[R]. Amsterdam: NLR, 2012 |
46 | 梁应剑, 梅运桥, 程丽媛, 等. 基于米散射的光学大气数据系统研究[J]. 测控技术, 2015, 34(1): 32-34. |
LIANG Y J, MEI Y Q, CHENG L Y, et al. Research on optical air data system based on Mie scattering[J]. Measurement & Control Technology, 2015, 34(1): 32-34 (in Chinese). | |
47 | 王晓维,梁应剑,李翔,等.基于光学多普勒频移的低空速测量方法研究[J].激光技术,2016,40(5):629-632. |
WANG X W, LIANG Y J, LI X,et al. Research of low-airspeed measurement based on optidal doppler frequency shift[J]. Laser Technology,2016,40(5):629-632 (in Chinese). | |
48 | 龙彦志, 梁应剑, 黄巧平, 等. 基于多普勒频移的光学大气测速系统设计[J]. 北京航空航天大学学报, 2018, 44(12): 2521-2527. |
LONG Y Z, LIANG Y J, HUANG Q P, et al. Design of optical airspeed measurement system based on Doppler shift[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2521-2527 (in Chinese). | |
49 | 李彬, 雷宏杰, 靳文华, 等. 相干探测系统最佳本振光功率测量方法(特邀)[J]. 光子学报, 2021, 50(10): 254-260. |
LI B, LEI H J, JIN W H, et al. Approach for measuring the optimal local optical power of coherent detection system (invited)[J]. Acta Photonica Sinica, 2021, 50(10): 254-260 (in Chinese). | |
50 | BURDGE G, DEIBNER G, SHAPRIO J, et al. Quantum sensors program[M]. New York:Defense Advanced Research Projects Agency,2009. |
51 | DUTTON Z, SHAPIRO J H, GUHA S. LADAR resolution improvement using receivers enhanced with squeezed-vacuum injection and phase-sensitive amplification: Erratum[J]. Journal of the Optical Society of America B, 2010, 27(10): 2007. |
52 | 冯飞, 许江盟, 马菁汀, 等. 基于压缩光的量子激光雷达技术[J]. 光子学报, 2017, 46(5): 0527001. |
FENG F, XU J M, MA J T, et al. Quantum lidar based on squeezed sates of light[J]. Acta Photonica Sinica, 2017, 46(5): 0527001 (in Chinese). | |
53 | 张建东, 张子静, 赵远, 等. 压缩真空注入超灵敏干涉型量子激光雷达[J]. 红外与激光工程, 2017, 46(7): 64-69. |
ZHANG J D, ZHANG Z J, ZHAO Y, et al. Super-sensitivity interferometric quantum lidar with squeezedvacuum injection[J]. Infrared and Laser Engineering, 2017, 46(7): 64-69 (in Chinese). | |
54 | 高丽, 张晓莉, 马菁汀, 等. 基于集成量子压缩光源的量子增强多普勒激光雷达(特邀)[J]. 红外与激光工程, 2021, 50(3): 71-77. |
GAO L, ZHANG X L, MA J T, et al. Quantum enhanced Doppler LiDAR based on integrated quantum squeezed light source(Invited)[J]. Infrared and Laser Engineering, 2021, 50(3): 71-77 (in Chinese). | |
55 | 上官明佳. 1.5μm单光子探测器在激光遥感中的应用[D]. 合肥: 中国科学技术大学, 2017: 1-24. |
SHANGGUAN M J. Laser remote sensing with 1.5μM single photon detectors[D]. Hefei: University of Science and Technology of China, 2017: 1-24 (in Chinese). | |
56 | SHCHERBATENKO M, LOBANOV Y, SEMENOV A, et al. Potential of a superconducting photon counter for heterodyne detection at the telecommunication wavelength[J]. Optics Express, 2016, 24(26): 30474. |
57 | 柳平, 延黎, 刘东亮, 等. 基于主客观组合赋权的PSSA安全性指标分配方法[J]. 火力与指挥控制, 2019, 44(12): 127-131. |
LIU P, YAN L, LIU D L, et al. The PSSA security index allocation method based on the subjective and objective combination weighting[J]. Fire Control & Command Control, 2019, 44(12): 127-131 (in Chinese). | |
58 | Control SpaceAge. Air data products solution guide[EB/OL]. . |
59 | Control SpaceAge. Air data sensing UAV special edition[EB/OL]. . |
60 | GOODRICH. Pitot and Pitot-Static Probes[EB/OL].. |
61 | DENNIS J C, THOMAS D A. Sideslip correction for a multi-function three probe air data system: US 2003/6609421 B2 [P]. 2003-08-26. |
62 | GREG A S, DENNIS J C. Multi-function air data sensing probe having an angle of attack vane: US 2005/6941805 B2 [P]. 2005-09-13. |
63 | HAGEN F W, SEIDEL H. Deutsche airbus flight test of Rosemount smart probe for distributed air data systems[C]∥1993 Proceedings AIAA/IEEE Digital Avionics Systems Conference. Piscataway: IEEE Press, 2002: 110-117. |
64 | 宋秀毅, 陆宇平. 嵌入式大气数据传感系统压力传感器设计研究[J]. 计测技术, 2007, 27(5): 8-10, 19. |
SONG X Y, LU Y P. Research on design of pressure sensor of embedded airdata sensing system[J]. Metrology & Measurement Technology, 2007, 27(5): 8-10, 19 (in Chinese). | |
65 | 沈国清. 嵌入式大气数据传感系统误差分析及其消除方法研究[D]. 南京: 南京航空航天大学, 2012: 15-23. |
SHEN G Q. Error analysis of flush air data sensing system&research on methods of error eliminating[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 15-23 (in Chinese). | |
66 | WHITMORE S, MOES T. The effects of pressure sensor acoustics on airdata derived from a high-angle-of-attack flush airdata sensing (HI-FADS) system[C]∥AIAA Aerospace Sciences Meeting.Reston: AIAA, 1991. |
67 | 高隆隆, 杜经民, 李宝仁. FADS测压管路动态响应特性分析[J]. 机床与液压, 2010, 38(13): 48-51. |
GAO L L, DU J M, LI B R. Dynamic response characteristic of FADS pneumatic tube[J]. Machine Tool & Hydraulics, 2010, 38(13): 48-51 (in Chinese). | |
68 | 王希洋, 柏楠, 苑景春, 等. FADS系统变管径引气管路压力延迟误差补偿方法[J]. 战术导弹技术, 2015(2): 37-42. |
WANG X Y, BO N, YUAN J C, et al. Compensation method of pneumatic lag error for FADS system with unequal-diameter tube[J]. Tactical Missile Technology, 2015(2): 37-42 (in Chinese). | |
69 | 李清东, 张孝功, 任章. FADS压力传感器延迟补偿[J]. 航天控制, 2008, 26(6): 12-15. |
LI Q D, ZHANG X G, REN Z. The time delay compensation method for the pressure sensors of FADS[J]. Aerospace Control, 2008, 26(6): 12-15 (in Chinese). | |
70 | 任森. SOI基高精度微机械谐振式压力传感器技术研究[D]. 西安: 西北工业大学, 2015: 5-13. |
REN S. Research on SOI-based high precision MEMS resonant pressure sensor technology[D].Xi’an: Northwestern Polytechnical University, 2015: 5-13 (in Chinese). | |
71 | 姚敏强, 康志宏, 宋继红. 振动筒压力传感器开环测试特征参数分析[J]. 仪表技术与传感器, 2016(7): 29-31. |
YAO M Q, KANG Z H, SONG J H. Characteristic parameters analysis of vibration cylinder pressure sensor open loop test[J]. Instrument Technique and Sensor, 2016(7): 29-31 (in Chinese). | |
72 | 李斌. 振动筒用恒弹性合金发展概述[J]. 金属功能材料, 2010, 17(5): 67-70. |
LI B. Development outline of constant elastic alloys used for vibration cylinder pressure sensor[J]. Metallic Functional Materials, 2010, 17(5): 67-70 (in Chinese). | |
73 | 朱亚辉, 于一鹏. 谐振传感器用新型恒弹性合金研究[J]. 金属功能材料, 2018, 25(4): 50-53. |
ZHU Y H, YU Y P. Study on a new type of constant elastic alloy for resonance sensor[J]. Metallic Functional Materials, 2018, 25(4): 50-53 (in Chinese). | |
74 | YU J, LU Y L, XIE B, et al. An electrostatic comb excitation resonant pressure sensor for high pressure applications[J]. IEEE Sensors Journal, 2022, 22(16): 15759-15768. |
75 | SHI X Q, LU Y L, XIE B, et al. A resonant pressure microsensor based on double-ended tuning fork and electrostatic excitation/piezoresistive detection[J]. Sensors, 2018, 18(8): 2494. |
76 | 赵晋敏, 李守荣, 王军波, 等. 扩散硅谐振式压力传感器同频干扰的建模与消除[J]. 传感技术学报, 2009, 22(3): 362-365. |
ZHAO J M, LI S R, WANG J B, et al. Model and elimination for co-channel interference in diffused silicon resonant pressure sensor[J]. Chinese Journal of Sensors and Actuators, 2009, 22(3): 362-365 (in Chinese). | |
77 | 孙晋豪, 樊尚春, 邢维巍. 硅微机械谐振式压力传感器闭环方法[J]. 电子测量技术, 2012, 35(10): 1-7. |
SUN J H, FAN S C, XING W W. Closed loop control of silicon micromachined resonant pressure sensors[J]. Electronic Measurement Technology, 2012, 35(10): 1-7 (in Chinese). | |
78 | 徐枝蕃. 硅微谐振式压力传感器闭环频率跟踪电路的研究与设计[D]. 合肥: 合肥工业大学, 2019: 1-53. |
XU Z F. Research and design of closed-loop frequency tracking circuit for silicon microresonance pressure sensor[D]. Hefei: Hefei University of Technology, 2019: 1-53 (in Chinese). | |
79 | 苑伟政, 任森, 邓进军, 等. 硅微机械谐振压力传感器技术发展[J]. 机械工程学报, 2013, 49(20): 2-9. |
YUAN W Z, REN S, DENG J J, et al. A review of silicon micromachined resonant pressure sensor[J]. Journal of Mechanical Engineering, 2013, 49(20): 2-9 (in Chinese). | |
80 | 中华人民共和国航空工业部. 飞行大气参数: [S].中国:航空工业部,1987:1-498. |
Ministry of Aviation Industry of the People’s Republic of China. Flight atmosphere parameter: [S] .China: Ministry of Aviation Industry,1987:1-498 (in Chinese). | |
81 | 肖建德. 大气数据计算机系统[M]. 北京: 国防工业出版社, 1992: 35-45. |
XIAO J D. Air data computer system[M]. Beijing: National Defense Industry Press, 1992: 35-45 (in Chinese). | |
82 | WHITMORE S, COBLEIGH B, HAERING E Jr. Design and calibration of the X-33 flush airdata sensing (FADS) system[C]∥Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998. |
83 | COBLEIGH B, WHITMORE S, HAERING E Jr, et al. Flush airdata sensing (FADS) system calibration procedures and results for blunt forebodies[C]∥Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999. |
84 | 方习高, 陆宇平. 嵌入式大气数据传感系统的求解算法研究[J]. 计算机测量与控制, 2008, 16(3): 398-400. |
FANG X G, LU Y P. Research on algorithms of flush airdata sensing system[J]. Computer Measurement & Control, 2008, 16(3): 398-400 (in Chinese). | |
85 | 方习高. 嵌入式大气数据传感系统的技术及应用研究[D]. 南京: 南京航空航天大学, 2007: 12-15. |
FANG X G. Research on the technique and application of flush airdata sensing system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007: 12-15 (in Chinese). | |
86 | 肖地波. 嵌入式大气数据传感系统算法及其关键技术研究[D]. 南京: 南京航空航天大学, 2010: 42-49. |
XIAO D B. Research on flush airdata sensing system algorithms and other key technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 42-49 (in Chinese). | |
87 | 郑守铎, 陆宇平, 叶玮. 小扰动线性化分析法在嵌入式大气传感系统中的应用[J]. 飞机设计, 2007, 27(3): 13-17. |
ZHENG S D, LU Y P, YE W. Application of small disturbances linearized stability analysis to FADS system[J]. Aircraft Design, 2007, 27(3): 13-17 (in Chinese). | |
88 | ROHLOFF T J, WHITMORE S A, CATTON I. Air data sensing from surface pressure measurements using a neural network method[J]. AIAA Journal, 1998, 36: 2094-2101. |
89 | 张斌, 于盛林. 嵌入式飞行参数传感系统的神经网络算法[J]. 航空学报, 2006, 27(2): 294-298. |
ZHANG B, YU S L. Neural network algorithm for flush airdata sensing system[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(2): 294-298 (in Chinese). | |
90 | 郑成军, 陆宇平, 陈峰. 广义逆在嵌入式大气数据传感系统中的应用[J]. 传感器与微系统, 2006, 25(5): 81-84. |
ZHENG C J, LU Y P, CHEN F. Application of pseudoinverse matrix in flush airdata sensing system[J]. Transducer and Microsystem Technologies, 2006, 25(5): 81-84 (in Chinese). | |
91 | 郑成军, 陆宇平, 高璐. BP网络在嵌入式大气数据传感系统中的应用[J]. 测控技术, 2006, 25(6): 9-12. |
ZHENG C J, LU Y P, GAO L. Application of back propagation in flush airdata sensing system[J]. Measurement & Control Technology, 2006, 25(6): 9-12 (in Chinese). | |
92 | 王逸斌, 刘学强, 覃宁, 等. 嵌入式大气数据系统Kriging算法模型[J]. 测控技术, 2015, 34(3): 138-141. |
WANG Y B, LIU X Q, QIN N, et al. A novel flush airdata system model based on kriging algorithm[J]. Measurement & Control Technology, 2015, 34(3): 138-141 (in Chinese). | |
93 | 美军公布B 2坠机直接原因[EB/OL]. . |
The US military announced the immediate cause of the B 2 crash[EB/OL]. (in Chinese). | |
94 | BEA. Final Report flight AF 447 Rio de Janeiro-Paris[R].2012. |
95 | International SAE. Minimum performance standard for pitot and pitot-static probes: SAE AS 8006A [S]. Washington, D.C.: SAE, 2015. |
96 | International SAE. Airspeed tubes electrically heated: SAE AS393 [S]. Washington, D.C.: SAE, 2015. |
97 | International SAE. Ice and Rain Minimum Qualification Standards for Pitot and Pitot-static Probes: SAE AS 5562-2015 [S]. Washington, D.C.: SAE, 2015. |
98 | Federal Aviation Administration. Electrically heated pitot and pitot-statictubes: TSO-C16a [S]. Washington, D.C.: FAA, 2010. |
99 | Federal Aviation Administration. Electrically heated pitot and pitot-statictubes: TSO-C16b [S]. Washington, D.C.: FAA, 2017. |
100 | 中国民用航空局. 运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局, 2011. |
Civil Aviation Administration of China. China civil aviation regulations part 25: Airworthiness standards of transport category aircraft: CCAR-25-R4 [S]. Beijing: Civil Aviation Administration of China, 2011 (in Chinese). | |
101 | RTCA. Environmental conditions and test procedures for airborne equipment: RTCA DO-160G [S]. Washington, D.C.: RTCA, 2010. |
102 | 中华人民共和国工业和信息化部. 民用飞机机载设备环境条件和试验方法第13部分: 结冰试验: [S]. 北京: 中国航空综合技术研究所, 2014. |
Ministry of Industry and Information Technology of the People’s Republic of China. Environmental conditions and test methods for airborne equipment of civil aircraft: Part 13: Icing Test: [S]. Beijing: Aeronautical Comprehensive Technology Research Institute of China,2014 (in Chinese). | |
103 | 李悟军,石磊,吴德兴. 民用航空器电热空速管最低性能要求: [S].北京:中国航空工业总公司,1996. |
LI W J, SHI L, WU D X. Minimum performance requirements for electric pitot tubes in civil aircraft: [S]. Beijing: Aviation Industry Corporation of China,1996 (in Chinese). | |
104 | KOCH K, BARTHLOTT W. Superhydrophobic and superhydrophilic plant surfaces: An inspiration for biomimetic materials[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367(1893): 1487-1509. |
105 | 高雪峰, 江雷. 天然超疏水生物表面研究的新进展[J]. 物理, 2006, 35(7): 559-564. |
GAO X F, JIANG L. Recent studies of natural superhydophobic bio-surfaces[J]. Physics, 2006, 35(7): 559-564 (in Chinese). | |
106 | 佟威, 熊党生. 仿生超疏水表面的发展及其应用研究进展[J]. 无机材料学报, 2019, 34(11): 1133-1144. |
TONG W, XIONG D S. Bioinspired superhydrophobic materials: Progress and functional application[J]. Journal of Inorganic Materials, 2019, 34(11): 1133-1144 (in Chinese). | |
107 | 方楠, 王敏, 王晓静, 等. 国外超疏水材料最新进展及其军用潜力分析[J]. 军民两用技术与产品, 2022(5): 16-19. |
FANG N, WANG M, WANG X J, et al. The latest development of superhydrophobic materials abroad and its military potential analysis[J]. Dual Use Technologies & Products, 2022(5): 16-19 (in Chinese). | |
108 | SHEN Y Z, LIU S Y, ZHU C L, et al. Facile fabrication of hierarchical structured superhydrophobic surface and its ultra dynamic water repellency[J]. Chemical Engineering Journal, 2017, 313: 47-55. |
109 | PAN R, ZHANG H J, ZHONG M. Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication[J]. ACS Applied Materials & Interfaces, 2021,13(1):1743-1753. |
110 | ROY S, IZAD A, DEANNA R G, et al. Smart ice detection systems based on resonant piezoelectric transducers[J]. Sensors and Actuators A: Physical, 1998, 69(3): 243-250. |
111 | WANG H P, HE M J, LIU H, et al. One-step fabrication of robust superhydrophobic steel surfaces with mechanical durability, thermal stability, and anti-icing function[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25586-25594. |
112 | TONG W, XIONG D S, TIAN T, et al. Superhydrophobic surface on aeronautical materials via the deposition of nanoparticles and a PDMS seal[J]. Applied Physics A, 2019, 125(3): 1-8. |
113 | 王新锋. 几种微/纳米结构超疏水材料的制备及其性能研究[D]. 武汉: 湖北大学, 2020: 1-25. |
WANG X F. Preparation and properties of several micro/nanostructured superhydrophobic materials[D]. Wuhan: Hubei University, 2020: 1-25 (in Chinese). | |
114 | 陈广华, 王国威, 宋丹. 镁合金超疏水表面制备技术的研究进展[J]. 材料保护, 2022, 55(6): 134-140. |
CHEN G H, WANG G W, SONG D. Research progress of preparation technology of super-hydrophobic surface on magnesium alloys[J]. Materials Protection, 2022, 55(6): 134-140 (in Chinese). | |
115 | ZHANG W L, WANG D H, SUN Z N, et al. Robust superhydrophobicity: Mechanisms and strategies[J]. Chemical Society Reviews, 2021, 50(6): 4031-4061. |
116 | 潘瑞, 钟敏霖. 超快激光制备超疏水超亲水表面及超疏水表面机械耐久性[J]. 科学通报, 2019, 64(12): 1268-1289. |
PAN R, ZHONG M L. Fabrication of superwetting surfaces by ultrafast lasers and Mechanical durability of superhydrophobic surfaces[J]. Chinese Science Bulletin, 2019, 64(12): 1268-1289 (in Chinese). | |
117 | 龙江游, 吴颖超, 龚鼎为, 等. 飞秒激光制备超疏水铜表面及其抗结冰性能[J]. 中国激光, 2015, 42(7): 706002. |
LONG J Y, WU Y C, GONG D W, et al. Femtosecond laser fabricated superhydrophobic copper surfaces and their anti-icing properties[J]. Chinese Journal of Lasers, 2015, 42(7): 706002 (in Chinese). | |
118 | 李君, 矫维成, 王寅春, 等. 超疏水材料在防/除冰技术中的应用研究进展[J]. 复合材料学报, 2022, 39(1): 23-38. |
LI J, JIAO W C, WANG Y C, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 23-38 (in Chinese). | |
119 | 沈一洲, 谢欣瑜, 陶杰, 等. 超疏水防冰材料的理论基础与应用研究进展[J]. 中国材料进展, 2022, 41(5): 388-397. |
SHEN Y Z, XIE X Y, TAO J, et al. Review on theoretical foundations and applications of superhydrophobic anti-icing materials[J]. Materials China, 2022, 41(5): 388-397 (in Chinese). | |
120 | WANG D H, SUN Q Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810): 55-59. |
121 | 王德辉. 浸润性与机械稳定性拆分强化构筑超疏水表面及其应用研究[D]. 成都: 电子科技大学, 2020: 11-87. |
WANG D H. Decoupling mechanical and wetting stability for robust superhydrophobic surfaces and application[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 11-87 (in Chinese). | |
122 | 刘晓林, 朱彦曈, 王泽林澜, 等. 飞行器仿生防冰涂层技术现状与趋势[J]. 航空学报, 2022, 43(10): 527331. |
LIU X L, ZHU Y T, WANG Z, et al. Research progress and development trend of bio-inspired anti-icing coatings for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527331 (in Chinese). | |
123 | 林贵平, 卜雪琴, 申晓斌. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016: 152-163. |
LIN G P, BU X Q, SHEN X B. Aircraft icing and anti-icing technology[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2016: 152-163 (in Chinese). | |
124 | 李薇, 叶林, 张杰, 等. 光纤式结冰传感器的试验研究[J]. 华中科技大学学报(自然科学版), 2009, 37(8): 16-18, 22. |
LI W, YE L, ZHANG J, et al. Experimental study on the fiber-optic sensor for direct ice detection[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2009, 37(8): 16-18, 22 (in Chinese). | |
125 | 刘华勇, 刘莉, 曹放华. 大气系统校准的基准空速管法[J]. 实验流体力学, 2013, 27(2): 91-94. |
LIU H Y, LIU L, CAO F H. Reference-air-data-boom method for air data system calibrations[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 91-94 (in Chinese). | |
126 | 秋路, 魏斌. 侧滑角校准飞行试验方法与面临的挑战研究[J]. 科技创新与应用, 2020(26): 115-117. |
QIU L, WEI B. A research on calibration flight test of for the angle of sideslip: Methods and challenges[J]. Technology Innovation and Application, 2020(26): 115-117 (in Chinese). | |
127 | HAERING E. Airdata measurement and calibration: 104316[R]. Washington,D.C.: NASA, 2005 |
128 | 闫晓婧, 杨涛, 药红红. 国外第六代战斗机概念方案与关键技术[J]. 航空科学技术, 2018, 29(4): 18-26. |
YAN X J, YANG T, YAO H H. Conceptual scheme and key technologies of sixth generation fighters abroad[J]. Aeronautical Science & Technology, 2018, 29(4): 18-26 (in Chinese). | |
129 | 王锴, 丁宇, 何大龙. 第六代战斗机发展动向及能力分析[J]. 光电技术应用, 2019, 34(5): 1-6, 15. |
WANG K, DING Y, HE D L. Development trend and capability analysis of the sixth generation fighter[J]. Electro-Optic Technology Application, 2019, 34(5): 1-6, 15 (in Chinese). | |
130 | 赵保军, 陈士涛, 李大喜, 等. 国外六代机发展及作战概念分析[J]. 现代防御技术, 2022, 50(6): 19-25. |
ZHAO B J, CHEN S T, LI D X, et al. Analysis of the sixth generation fighter development and operational concept[J]. Modern Defence Technology, 2022, 50(6): 19-25 (in Chinese). |
[1] | 李文, 李清东, 李亮, 陈建, 任章, 廉成斌, 王浩亮. 基于模糊自适应卡尔曼滤波的大气数据辅助姿态算法[J]. 航空学报, 2015, 36(4): 1267-1274. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学