1 |
KIND R J, POTAPCZUK M G, FEO A, et al. Experimental and computational simulation of in-flight icing phenomena[J]. Progress in Aerospace Sciences, 1998, 34(5): 257-345.
|
2 |
LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767.
|
3 |
CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35: 11-21.
|
4 |
陈勇, 孔维梁, 刘洪. 飞机过冷大水滴结冰气象条件运行设计挑战[J]. 航空学报, 2023, 44(1): 626973.
|
|
CHEN Y, KONG W L, LIU H. Challenge of aircraft design under operational conditions of supercooled large water droplet icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 626973 (in Chinese).
|
5 |
郭琪磊, 桑为民, 牛俊杰, 等. 复杂气象条件下考虑结冰风险的无人机飞行策略[J]. 航空学报, 2023, 44(1): 627518.
|
|
GUO Q L, SANG W M, NIU J J, et al. UAV flight strategy considering icing risk under complex meteorological conditions[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 627518 (in Chinese).
|
6 |
CAO Y H, TAN W Y, WU Z L. Aircraft icing: An ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75: 353-385.
|
7 |
刘晓林, 朱彦曈, 王泽林澜, 等. 飞行器仿生防冰涂层技术现状与趋势[J]. 航空学报, 2022, 43(10): 527331.
|
|
LIU X L, ZHU Y T, WANG Z, et al. Research progress and development trend of bio-inspired anti-icing coatings for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527331 (in Chinese).
|
8 |
MASON J, STRAPP W, CHOW P. The ice particle threat to engines in flight[C]∥ 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 206.
|
9 |
陈光. GEnx 发动机结冰问题初探[J]. 国际航空, 2014(2): 72-73.
|
|
CHEN G. Discussion on GEnx engine icing[J]. International Aviation, 2014(2): 72-73 (in Chinese).
|
10 |
袁庆浩, 樊江, 白广忱. 航空发动机内部冰晶结冰研究综述[J]. 推进技术, 2018, 39(12): 2641-2650.
|
|
YUAN Q H, FAN J, BAI G C. Review of ice crystal icing in aero-engines[J]. Journal of Propulsion Technology, 2018, 39(12): 2641-2650 (in Chinese).
|
11 |
黄平, 卜雪琴, 刘一鸣, 等. 混合相/冰晶条件下的结冰研究综述[J]. 航空学报, 2022, 43(5): 025178.
|
|
HUANG P, BU X Q, LIU Y M, et al. Mixed phase/glaciated ice accretion: review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 025178 (in Chinese).
|
12 |
MASON J G, CHOW P, FULEKI D M. Understanding ice crystal accretion and shedding phenomenon in jet engines using a rig test[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(4): 1.
|
13 |
ADDY Jr H E, VERES J P. An overview of NASA engine ice-crystal icing research[C]∥ International Conference on Aircraft and Engine Icing and Ground Deicing. Warrendale: Society of Automotive Engineers, Inc., 2011: 2011-217254.
|
14 |
DEZITTER F, GRANDIN A, BRENGUIER J L, et al. HAIC - high altitude ice crystals[C]∥ 5th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2013: 2674.
|
15 |
FEDERAL AVIATION ADMINISTRATION. 33.68 Amendment 33-34 induction system icing[R]. Washington, D. C.:Federal Aviation Administration,2015.
|
16 |
AL-KHALIL K, IRANI E, MILLER D. Mixed phase icing simulation and testing at the cox icing wind tunnel[C]∥ 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003: 903.
|
17 |
MACLEOD J D. Development of ice crystal facilities for engine testing[C]∥ SAE Aircraft and Engine Icing International Conference. Warrendale: SAE International, 2007: 2007-01-3290.
|
18 |
MACLEOD J, FULEKI D. Ice crystal accretion test rig development for a compressor transition duct[C]∥ AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010: 7529.
|
19 |
CURRIE T, STRUK P, TSAO J C, et al. Fundamental study of mixed-phase icing with application to ice crystal accretion in aircraft jet engines[C]∥ 4th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2012: 3035.
|
20 |
CURRIE T C, FULEKI D, MAHALLATI A. Experimental studies of mixed-phase sticking efficiency for ice crystal accretion in jet engines[C]∥ 6th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2014: 3049.
|
21 |
VAN ZANTE J F, BENCIC T J, RATVASKY T P. NASA Glenn propulsion systems lab ice crystal cloud characterization update 2015[C]∥ 8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2016: 3897.
|
22 |
AGUI J H, STRUK P M, BARTKUS T P. Total temperature measurements using a rearward facing probe in supercool liquid droplet and ice crystal clouds[C]∥ 2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018: 3970.
|
23 |
KING M C, MANIN J, VAN ZANTE J F, et al. Particle size calibration testing in the NASA propulsion system laboratory[C]∥ 2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018: 3971.
|
24 |
STRUK P M, AGUI J H, RATVASKY T, et al. Ice-crystal icing accretion studies at the NASA propulsion systems laboratory[C]∥ International Conference on Icing of Aircraft, Engines, and Structures. Warrendale: SAE International, 2019: 2019-01-1921.
|
25 |
BAUMERT A, BANSMER S E, BACHER M. Implementation of an innovative ice crystal generation system to the Icing Wind Tunnel Braunschweig[C]∥ 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015: 1225.
|
26 |
BAUMERT A, BANSMER S, SATTLER S, et al. Simulating natural ice crystal cloud conditions for icing wind tunnel experiments-A review on the design, commissioning and calibration of the TU Braunschweig ice crystal generation system[C]∥ 8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2016: 4053.
|
27 |
BAUMERT A, BANSMER S, TRONTIN P, et al. Experimental and numerical investigations on aircraft icing at mixed phase conditions[J]. International Journal of Heat and Mass Transfer, 2018, 123: 957-978.
|
28 |
STRUK P M, RATVASKY T P, BENCIC T, et al. An initial study of the fundamentals of ice crystal icing physics in the NASA propulsion systems laboratory[C]∥ 9th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2017: 4242.
|
29 |
BARTKUS T P, STRUK P M, TSAO J C. Evaluation of a thermodynamic ice-crystal icing model using experimental ice accretion data[C]∥ 2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018: 4129.
|
30 |
AYAN E, OZGEN S, MURAT C, et al. Prediction of ice crystal accretion with TAICE[C]∥ International Conference on Icing of Aircraft, Engines, and Structures. Warrendale: SAE International, 2015: 2015-01-2148.
|
31 |
GRIFT E J, NORDE E, VAN DER WEIDE E T A, et al. Computational method for ice crystal trajectories in a turbofan compressor[C]∥ International Conference on Icing of Aircraft, Engines, and Structures. Warrendale: SAE International, 2015: 2015-01-2139.
|
32 |
AOUIZERATE G, CHARTON V, BALLAND M, et al. Ice crystals trajectory calculations in a turbofan engine[C]∥ 2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018: 4130.
|
33 |
NORDE E, SENONER J M, VAN DER WEIDE E T A, et al. Eulerian and Lagrangian ice-crystal trajectory simulations in a generic turbofan compressor[J]. Journal of Propulsion and Power, 2019, 35(1): 26-40.
|
34 |
VILLEDIEU P, TRONTIN P, CHAUVIN R. Glaciated and mixed phase ice accretion modeling using ONERA 2D icing suite[C]∥ 6th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2014: 2199.
|
35 |
TRONTIN P, BLANCHARD G, VILLEDIEU P. A comprehensive numerical model for mixed-phase and glaciated icing conditions[C]∥ 8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2016: 3742.
|
36 |
马乙楗, 柴得林, 王强, 等. 基于蒙特卡洛方法的冰晶撞击特性计算[J]. 南京航空航天大学学报, 2023, 55(2): 291-301.
|
|
MA Y J, CHAI D L, WANG Q, et al. Calculation of ice crystal impact characteristics using Monte Carlo method[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(2): 291-301 (in Chinese).
|
37 |
马乙楗, 柴得林, 王强, 等. 翼面结冰过程中的冰晶运动相变与黏附特性[J]. 航空学报, 2023, 44(1): 627817.
|
|
MA Y J, CHAI D L, WANG Q, et al. Phase change and adhesion characteristics of ice crystal movements in wing icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 627817 (in Chinese).
|
38 |
姜飞飞, 董威, 郑梅, 等. 冰晶在涡扇发动机内相变换热特性[J]. 航空动力学报, 2019, 34(3): 567-575.
|
|
JIANG F F, DONG W, ZHENG M, et al. Phase change heat transfer characteristic of ice crystal ingested into turbofan engine[J]. Journal of Aerospace Power, 2019, 34(3): 567-575 (in Chinese).
|
39 |
卜雪琴, 李皓, 黄平, 等. 二维机翼混合相结冰数值模拟[J]. 航空学报, 2020, 41(12): 124085.
|
|
BU X Q, LI H, HUANG P, et al. Numerical simulation of mixed phase icing on two-dimensional airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124085 (in Chinese).
|
40 |
ZHANG L F, LIU Z X, ZHANG M H. Numerical simulation of ice accretion under mixed-phase conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(13): 2473-2483.
|
41 |
谭燕. 基于欧拉方法的2维翼型冰晶结冰数值计算[J]. 航空发动机, 2020, 46(4): 30-35.
|
|
TAN Y. Numerical calculation of 2D airfoil ice crystal icing based on Euler method[J]. Aeroengine, 2020, 46(4): 30-35 (in Chinese).
|
42 |
郭琪磊, 牛俊杰, 安博, 等. 混合相态冰晶积冰的数值研究[J]. 空气动力学学报, 2021, 39(2): 168-175.
|
|
GUO Q L, NIU J J, AN B, et al. Numerical simulation of ice crystal icing under mixed-phase conditions[J]. Acta Aerodynamica Sinica, 2021, 39(2): 168-175 (in Chinese).
|
43 |
黄平, 卜雪琴, 林贵平, 等. 冰晶粒子运动过程中的相变特性[J]. 航空动力学报, 2022, 37(7): 1379-1391.
|
|
HUANG P, BU X Q, LIN G P, et al. Phase transition characteristics of ice crystal particles in motion[J]. Journal of Aerospace Power, 2022, 37(7): 1379-1391 (in Chinese).
|
44 |
NORDE E, VAN DER WEIDE E T A, HOEIJMAKE⁃ RS H W M. Eulerian method for ice crystal icing[J]. AIAA Journal, 2018, 56(1): 222-234.
|