1 |
SHAN M H, GUO J, GILL E. Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Sciences, 2016, 80: 18-32.
|
2 |
SIZOV D A, ASLANOV V S. Space debris removal with harpoon assistance: Choice of parameters and optimization[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(4): 767-778.
|
3 |
LI Y X, HUO J, MA P, et al. Target localization method of non-cooperative spacecraft on on-orbit service[J]. Chinese Journal of Aeronautics, 2022, 35(11): 336-348.
|
4 |
ZHANG J, PARKS G T, LUO Y Z, et al. Multispacecraft refueling optimization considering the J2 perturbation and window constraints[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(1): 111-122.
|
5 |
GAO Y T, LU X, PENG Y M, et al. Trajectory optimization of multiple asteroids exploration with asteroid 2010TK7 as main target[J]. Advances in Space Research, 2019, 63(1): 432-442.
|
6 |
PELONI A, CERIOTTI M, DACHWALD B. Solar-sail trajectory design for a multiple near-earth-asteroid rendezvous mission[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(12): 2712-2724.
|
7 |
HELVIG C S, ROBINS G, ZELIKOVSKY A. The moving-target traveling salesman problem[J]. Journal of Algorithms, 2003, 49(1): 153-174.
|
8 |
SAAD S, WAN JAAFAR W N, JAMIL S J. Solving standard traveling salesman problem and multiple traveling salesman problem by using branch-and-bound[C]∥ AIP Conference Proceedings. 2013.
|
9 |
TOMANOVÁ P, HOLÝ V. Ant colony optimization for time-dependent travelling salesman problem[C]∥Proceedings of the 2020 4th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence. New York: ACM, 2020: 47-51.
|
10 |
ZHAO J F, FENG W M, YUAN J P. A novel two-level optimization strategy for multi-debris active removal mission in LEO[J]. Computer Modeling in Engineering & Sciences, 2020, 122(1): 149-174.
|
11 |
朱阅訸. 面向大规模目标访问任务的飞行序列规划方法[D]. 长沙: 国防科技大学, 2020.
|
|
ZHU Y H. Flight sequence planning method for large-scale-object visiting mission[D]. Changsha: National University of Defense Technology, 2020 (in Chinese).
|
12 |
SHANG H B, LIU Y X. Assessing accessibility of main-belt asteroids based on Gaussian process regression[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(5): 1144-1154.
|
13 |
HUANG A Y, LUO Y Z, LI H N. Fast estimation of perturbed impulsive rendezvous via semi-analytical equality-constrained optimization[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(12): 2383-2390.
|
14 |
ZHU Y H, LUO Y Z. Fast approximation of optimal perturbed long-duration impulsive transfers via artificial neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 1123-1138.
|
15 |
ZHU Y H, LUO Y Z. Fast evaluation of low-thrust transfers via multilayer perceptions[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(12): 2627-2637.
|
16 |
VIAVATTENE G, CERIOTTI M. Artificial neural networks for multiple NEA rendezvous missions with continuous thrust[J]. Journal of Spacecraft and Rockets, 2022, 59(2): 574-586.
|
17 |
CUI P Y, QIAO D, CUI H T, et al. Target selection and transfer trajectories design for exploring asteroid mission[J]. Science China Technological Sciences, 2010, 53(4): 1150-1158.
|
18 |
CERF M. Multiple space debris collecting mission—debris selection and trajectory optimization[J]. Journal of Optimization Theory and Applications, 2013, 156(3): 761-796.
|
19 |
HUANG A Y, LUO Y Z, LI H N. Global optimization of multiple-spacecraft rendezvous mission via decomposition and dynamics-guide evolution approach[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(1): 171-178.
|
20 |
WANG H J, YANG Z, ZHOU W G, et al. Online scheduling of image satellites based on neural networks and deep reinforcement learning[J]. Chinese Journal of Aeronautics, 2019, 32(4): 1011-1019.
|
21 |
LITTLE B D, FRUEH C E. Space situational awareness sensor tasking: Comparison of machine learning with classical optimization methods[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(2): 262-273.
|
22 |
刘冰雁, 叶雄兵, 周赤非, 等. 基于改进DQN的复合模式在轨服务资源分配[J]. 航空学报, 2020, 41(5): 323630.
|
|
LIU B Y, YE X B, ZHOU C F, et al. Allocation of composite mode on-orbit service resource based on improved DQN[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 323630 (in Chinese).
|
23 |
IZZO D, MÄRTENS M, PAN B F. A survey on artificial intelligence trends in spacecraft guidance dynamics and control[J]. Astrodynamics, 2019, 3(4): 287-299.
|
24 |
SONG Y, GONG S P. Solar-sail trajectory design for multiple near-Earth asteroid exploration based on deep neural networks[J]. Aerospace Science and Technology, 2019, 91: 28-40.
|
25 |
IZZO D, ÖZTÜRK E. Real-time guidance for low-thrust transfers using deep neural networks[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(2): 315-327.
|
26 |
ZAVOLI A, FEDERICI L. Reinforcement learning for robust trajectory design of interplanetary missions[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(8): 1440-1453.
|
27 |
SÁNCHEZ-SÁNCHEZ C, IZZO D. Real-time optimal control via deep neural networks: Study on landing problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(5): 1122-1135.
|
28 |
SCORSOGLIO A, D’AMBROSIO A, GHILARDI L, et al. Image-based deep reinforcement meta-learning for autonomous lunar landing[J]. Journal of Spacecraft and Rockets, 2022, 59(1): 153-165.
|
29 |
YANG B, LI S A, FENG J L, et al. Fast solver for J2-perturbed lambert problem using deep neural network[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(5): 875-884.
|
30 |
PENG H, BAI X L. Artificial neural network–based machine learning approach to improve orbit prediction accuracy[J]. Journal of Spacecraft and Rockets, 2018, 55(5): 1248-1260.
|
31 |
VINYALS O, FORTUNATO M, JAITLY N. Pointer networks[DB/OL]. arXiv preprint: 1506.03134, 2015.
|
32 |
GU S S, HAO T, YAO H M. A pointer network based deep learning algorithm for unconstrained binary quadratic programming problem[J]. Neurocomputing, 2020, 390: 1-11.
|
33 |
GU S S, YAO H M. Pointer network based deep learning algorithm for the maximum clique problem[J]. International Journal on Artificial Intelligence Tools, 2021, 30(1): 2140004.
|
34 |
GU S S, YANG Y E. A deep learning algorithm for the max-cut problem based on pointer network structure with supervised learning and reinforcement learning strategies[J]. Mathematics, 2020, 8(2): 298.
|
35 |
马一凡, 赵凡宇, 王鑫, 等. 基于改进指针网络的卫星对地观测任务规划方法[J]. 浙江大学学报(工学版), 2021, 55(2): 395-401.
|
|
MA Y F, ZHAO F Y, WANG X, et al. Satellite earth observation task planning method based on improved pointer networks[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(2): 395-401 (in Chinese).
|
36 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
37 |
KIM Y. Convolutional neural networks for sentence classification[DB/OL]. arXiv preprint: 1408.5882, 2014.
|
38 |
NUDT. Problem data of the GTOC11: Candidate asteroids[EB/OL]. .
|
39 |
ESA. Problem data of the GTOC9: Debris orbits[EB/OL]. .
|
40 |
BANG J, AHN J. Multitarget rendezvous for active debris removal using multiple spacecraft[J]. Journal of Spacecraft and Rockets, 2019, 56(4): 1237-1247.
|