| 1 |
刘云霄, 胡忠志, 王继强. 基于线性自抗扰的齿轮传动涡扇发动机控制[J]. 航空发动机, 2021, 47(5): 78-85.
|
|
LIU Y X, HU Z Z, WANG J Q. Control of geared turbofan engine based on linear active disturbance rejection[J]. Aeroengine, 2021, 47(5): 78-85 (in Chinese).
|
| 2 |
王曦, 杨舒柏, 朱美印. 航空发动机控制原理[M]. 北京: 科学出版社, 2021.
|
|
WANG X, YANG S B, ZHU M Y. Aeroengine control principles[M]. Beijing: Science Press, 2021 (in Chinese).
|
| 3 |
张慧凤. 基于干扰观测器的几类非线性系统抗干扰控制[D]. 沈阳: 东北大学, 2016.
|
|
ZHANG H F. Anti-disturbance control for several classes of nonlinear systems based on disturbance observers[D]. Shenyang: Northeastern University, 2016 (in Chinese).
|
| 4 |
张海波, 孙健国, 孙立国. 一种涡轴发动机转速抗扰控制器设计及应用[J]. 航空动力学报, 2010, 25(4): 943-950.
|
|
ZHANG H B, SUN J G, SUN L G. Design and application of a disturbance rejection rotor speed control method for turbo-shaft engines[J]. Journal of Aerospace Power, 2010, 25(4): 943-950 (in Chinese).
|
| 5 |
CHEN J J, WANG J Q, LIU Y X, et al. Design and verification of aeroengine rotor speed controller based on U-LADRC[J]. Mathematical Problems in Engineering, 2020, 2020: 1-12.
|
| 6 |
刘云霄. 齿轮传动涡扇发动机建模与抗扰控制研究和验证[D]. 南京: 南京航空航天大学, 2020.
|
|
LIU Y X. Research and verification of geared turbofan engine modelling and disturbance rejection control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese).
|
| 7 |
陶涛, 阎文博. 航空发动机H∞混合灵敏度控制中权阵的选取[J]. 推进技术, 1999, 20(4): 66-70.
|
|
TAO T, YAN W B. Construction of weighting matrixes in mixed sensitivities H∞ controller design for aeroengine[J]. Journal of Propulsion Technology, 1999, 20(4): 66-70 (in Chinese).
|
| 8 |
GAWRONSKI W, JUANG J N. Model reduction in limited time and frequency intervals[J]. International Journal of Systems Science, 1990, 21(2): 349-376.
|
| 9 |
IWASAKI T, HARA S. Generalized KYP lemma: Unified frequency domain inequalities with design applications[J]. IEEE Transactions on Automatic Control, 2005, 50(1): 41-59.
|
| 10 |
李贤伟. 基于广义KYP引理的有限频域分析与综合[D]. 哈尔滨: 哈尔滨工业大学, 2015.
|
|
LI X W. Finite frequency analysis and synthesis based on generalized KYP lemma[D]. Harbin: Harbin Institute of Technology, 2015 (in Chinese).
|
| 11 |
DALEY S, WANG J G. A geometric approach to the design of remotely located vibration control systems[J]. Journal of Sound and Vibration, 2008, 318(4-5): 702-714.
|
| 12 |
WANG J Q. A single sensor and single actuator approach to performance tailoring over a prescribed frequency band[J]. ISA Transactions, 2016, 61: 329-336.
|
| 13 |
WANG J Q. Simultaneous vibration suppression and energy harvesting: Damping optimization for performance limit[J]. Mechanical Systems and Signal Processing, 2019, 132: 609-621.
|
| 14 |
WANG J Q. Optimal design for energy harvesting vibration absorbers[J]. Journal of Dynamic Systems, Measurement, and Control, 2021, 143(5): 051008.
|
| 15 |
CHAPMAN J W, LITT J S. Control design for an advanced geared turbofan engine[C]∥53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2017.
|
| 16 |
CHAPMAN J W, LAVELLE T, MAY R, et al. Toolbox for the modeling and analysis of thermodynamic systems (T-MATS) user’s guide: NASA/TM-2014-216638[R].Washington, D.C.: NASA, 2014.
|
| 17 |
朱上翔. 大气扰动及其对飞行的影响[J]. 航空学报, 1985, 6(2): 148-156.
|
|
ZHU S X. A review of progress in the study of atmospheric disturbance and its effect on flight[J]. Acta Aeronautica et Astronautica Sinica, 1985, 6(2): 148-156 (in Chinese).
|
| 18 |
WANG J Q. Active restricted control for harmonic vibration suppression[J]. International Journal of Structural Stability and Dynamics, 2019, 19(12): 1971007.
|
| 19 |
KOPASAKIS G. Modeling of atmospheric turbulence as disturbances for control design and evaluation of high speed propulsion systems[C]∥Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air, 2010: 201-213.
|
| 20 |
KOPASAKIS G. Atmospheric turbulence modeling for aero vehicles: Fractional order fits: NASA/TM-2010-216961[R]. Washington, D.C.: NASA, 2010.
|