[1] YAO Q K, LIU S J, HE X Y, et al. Research and prospect of battlefield target operational intention recognition[J]. Journal of Command and Control, 2017, 3(2): 127-131 (in Chinese). 姚庆锴, 柳少军, 贺筱媛, 等. 战场目标作战意图识别问题研究与展望[J]. 指挥与控制学报, 2017, 3(2): 127-131. [2] HALL D L, LLINAS J. Handbook of multisensor data fusion[M]. Boca Raton: CRC Press, 2001. [3] PRESTON E, BERGMAN T, GORENFLO R, et al. Development of a field-portable imaging system for scene classification using multispectral data fusion algorithms[J]. IEEE Aerospace and Electronic Systems Magazine, 1994, 9(9): 13-19. [4] WANG H W, SHI H Q, LI X D. An intention recognition method based on intuitionistic fuzzy sets and Bayesian inference[J]. Ship Electronic Engineering, 2019, 39(6): 42-45 (in Chinese). 王海旺, 史红权, 李晓丹. 基于直觉模糊集和贝叶斯推理的意图识别方法[J]. 舰船电子工程, 2019, 39(6): 42-45. [5] FAN H Y, GAO R Y, JIN X H. Research on intention estimation method based on fuzzy random Bayesian networks[J]. Fire Control & Command Control, 2019, 44(7): 100-104, 109 (in Chinese). 范瀚阳, 高睿源, 金兴华. 基于模糊随机贝叶斯网络的意图估计方法[J]. 火力与指挥控制, 2019, 44(7): 100-104, 109. [6] WEI W, WANG G B. Detection and recognition of air targets by unmanned aerial vehicle based on RBF neural network[J]. Ship Electronic Engineering, 2018, 38(10): 37-40, 110 (in Chinese). 魏蔚, 王公宝. 基于径向基神经网络的侦察目标意图识别研究[J]. 舰船电子工程, 2018, 38(10): 37-40, 110. [7] ZHAO F J, ZHOU Z J, HU C H, et al. Aerial target intention recognition approach based on belief-rule-base and evidential reasoning[J]. Electronics Optics & Control, 2017, 24(8): 15-19, 50 (in Chinese). 赵福均, 周志杰, 胡昌华, 等. 基于置信规则库和证据推理的空中目标意图识别方法[J]. 电光与控制, 2017, 24(8): 15-19, 50. [8] WU Z Q, LI D F. A model for aerial target attacking intention judgment based on reasoning and multi-attribute decision making[J]. Electronics Optics & Control, 2010, 17(5): 10-13 (in Chinese). 伍之前, 李登峰. 基于推理和多属性决策的空中目标攻击意图判断模型[J]. 电光与控制, 2010, 17(5): 10-13. [9] [10] CHEN Y M, LI C Y. Simulation of target tactical intention recognition based on knowledge map[J]. Computer Simulation, 2019, 36(8): 1-4, 19 (in Chinese). 陈优敏, 李长云. 基于知识图谱的目标战术意图识别仿真[J]. 计算机仿真, 2019, 36(8): 1-4, 19. [11] ZHOU W W, YAO P Y, ZHANG J Y, et al. Combat intention recognition for aerial targets based on deep neural network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 322476 (in Chinese). 周旺旺, 姚佩阳, 张杰勇, 等. 基于深度神经网络的空中目标作战意图识别[J]. 航空学报, 2018, 39(11): 322476. [12] BAI L, XIAO Y D, QI J T. Adversarial intention recognition based on reinforcement learning[J/OL]. Journal of Command and Control, (2020-12-03)[2022-02-15]. https:∥kns.cnki.net/kcms/detail/14.1379.tp.20201203.1323.002.html(in Chinese). 白亮, 肖延东, 齐景涛. 基于强化学习的对抗意图识别[J/OL]. 指挥与控制学报, (2020-12-03)[2022-02-15]. https:∥kns.cnki.net/kcms/detail/14.1379.tp.20201203.1323.002.html. [13] [14] TENG F, LIU S, SONG Y F. BiLSTM-Attention: An air target tactical intention recognition model[J]. Aero Weaponry, 2021, 28(5): 24-32 (in Chinese). 滕飞, 刘曙, 宋亚飞. BiLSTM-Attention: 一种空中目标战术意图识别模型[J]. 航空兵器, 2021, 28(5): 24-32. [15] ZHOU T L, CHEN M, WANG Y H, et al. Information entropy-based intention prediction of aerial targets under uncertain and incomplete information[J]. Entropy, 2020, 22(3): 279. [16] CAO S Y, LIU Y A, XUE S. Target tactical intention recognition method of improved high-dimensional data similarity[J]. Transducer and Microsystem Technologies, 2017, 36(5): 25-28 (in Chinese). 曹思远, 刘以安, 薛松. 改进高维数据相似度的目标意图识别方法[J]. 传感器与微系统, 2017, 36(5): 25-28. [17] POURREZA P, SABERI M, AZADEH A, et al. Health, safety, environment and ergonomic improvement in energy sector using an integrated fuzzy cognitive map─Bayesian network model[J]. International Journal of Fuzzy Systems, 2018, 20(4): 1346-1356. [18] LESSAN J, FU L P, WEN C. A hybrid Bayesian network model for predicting delays in train operations[J]. Computers & Industrial Engineering, 2019, 127: 1214-1222. [19] DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. The Annals of Mathematical Statistics, 1967, 38(2): 325-339. [20] SHAFER G. A mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976. [21] YOU Y Q, SUN J B, GE B F, et al. A data-driven M2 approach for evidential network structure learning[J]. Knowledge-Based Systems, 2020, 187: 104810. [22] PEARL J, GLYMOUR M, JEWELL N P. Causal inference in statistics: A primer[M]. Hoboken: Wiley, 2016: 26-87. [23] PEARL J, MACKENZIE D. The book of why: The new science of cause and effect[M]. New York: Allen Lane, 2018: 1-15. [24] JIANG W. A correlation coefficient for belief functions[J]. International Journal of Approximate Reasoning, 2018, 103: 94-106. [25] PICHON F, DEN?UX T. The unnormalized dempster's rule of combination: a new justification from the least commitment principle and some extensions[J]. Journal of Automated Reasoning, 2010, 45(1): 61-87. [26] SMETS P. The application of the matrix calculus to belief functions[J]. International Journal of Approximate Reasoning, 2002, 31(1-2): 1-30. |