[1] 吴伟光, 马履中, 杨启志, 等. 车辆并联机构座椅三维减振研究[J]. 农业机械学报, 2011, 42(6):23-27. WU W G, MA L Z, YANG Q Z, et al. 3-D vibration isolation of vehicle seat based on parallel mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(6):23-27(in Chinese). [2] 叶鹏达, 尤晶晶, 沈惠平, 等. 6支链台体型Stewart衍生构型位置正解半解析算法[J]. 农业机械学报, 2019, 50(4):393-400. YE P D, YOU J J, SHEN H P, et al. Semi-analytic algorithm for forward displacement analysis of six links Stewart derivative configurations[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4):393-400(in Chinese). [3] ZHOU J X, WANG K, XU D L, et al. A six degrees-of-freedom vibration isolation platform supported by a hexapod of quasi-zero-stiffness struts[J]. Journal of Vibration and Acoustics, 2017, 139(3):034502. [4] 吕俊超, 陈照波, 焦映厚, 等. 基于音圈电机的Stewart主动隔振平台设计[J]. 机械设计与制造, 2013(2):62-65. LVJ C, CHEN Z B, JIAO Y H, et al. Design of Stewart active vibration isolation platform based on voice coil motor[J]. Machinery Design & Manufacture, 2013(2):62-65(in Chinese). [5] PREUMONT A, HORODINCA M, ROMANESCU I, et al. A six-axis single-stage active vibration isolator based on Stewart platform[J]. Journal of Sound and Vibration, 2007, 300(3-5):644-661. [6] 李伟鹏. 空间高稳定精密跟瞄Hexapod平台指向与振动控制研究[D]. 北京:北京航空航天大学, 2008 LI W P. Pointing and vibration control of space-base high stability precise pointing and tracking hexapod[D]. Beijing:Beihang University, 2008. (in Chinese). [7] HANIEH A A B. Active isolation and damping of vibrations via Stewart platform[D]. Brüssel:Universite Libre de Bruxelles, 2003. [8] 杨宇, 郑淑涛, 韩俊伟. 基于动力学的Stewart平台振动控制策略研究[J]. 农业机械学报, 2010, 41(6):20-24. YANG Y, ZHENG S T, HAN J W. Stewart platform vibration control strategy based on dynamics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(6):20-24(in Chinese). [9] 李永泉, 刘天旭, 王立捷, 等. Stewart平台多能域系统动力学全解建模与实验[J]. 农业机械学报, 2018, 49(4):404-411. LIY Q, LIU T X, WANG L J, et al. Multi-energy domain dynamic full solution model and Experiment of Stewart Platform[J]. Transactions of The Chinese Society of Agricultural Machinery, 2018, 49(04):411-418. (in Chinese). [10] HILLER M W, BRYANT M D, UMEGAKI J. Attenuation and transformation of vibration through active control of magnetostrictive terfenol[J]. Journal of Sound and Vibration, 1989, 134(3):507-519. [11] LE T D, AHN KK. A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat[J]. Journal of Sound and Vibration, 2011, 330(26):6311-6335. [12] ZHANG J Z, LI D, CHEN M J, et al. An ultra-low frequency parallel connection nonlinear isolator for precision instruments[J]. Key Engineering Materials, 2004, 257-258:231-238. [13] KOVACIC I, BRENNAN M J, WATERS T P. A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic[J]. Journal of Sound and Vibration, 2008, 315(3):700-711. [14] CARRELLA A, BRENNAN M J, KOVACIC I, et al. On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J]. Journal of Sound and Vibration, 2009, 322(4-5):707-717. [15] CARRELLA A, BRENNAN M J, WATERS T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2007, 301(3-5):678-689. [16] LIU X T, HUANG X C, HUA H X. On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector[J]. Journal of Sound and Vibration, 2013, 332(14):3359-3376. [17] ZHENG Y S, LI Q P, YAN B, et al. A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs[J]. Journal of Sound and Vibration, 2018, 422:390-408. [18] ZHENG Y S, ZHANG X N, LUO Y J, et al. Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness[J]. Mechanical Systems and Signal Processing, 2018, 100:135-151. [19] ZHENG Y S, ZHANG X N, LUO Y J, et al. Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring[J]. Journal of Sound and Vibration, 2016, 360:31-52. [20] WU W J, CHEN X D, SHAN Y H. Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness[J]. Journal of Sound and Vibration, 2014, 333(13):2958-2970. [21] LI Q, ZHU Y, XU D F, et al. A negative stiffness vibration isolator using magnetic spring combined with rubber membrane[J]. Journal of Mechanical Science and Technology, 2013, 27(3):813-824. [22] SHAN Y H, WU W J, CHEN X D. Design of a miniaturized pneumatic vibration isolator with high-static-low-dynamic stiffness[J]. Journal of Vibration and Acoustics, 2015, 137(4):045001. [23] XU D L, YU Q P, ZHOU J X, et al. Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2013, 332(14):3377-3389. [24] GENG Z J, HAYNES L S. Six degree-of-freedom active vibration control using the Stewart platforms[J]. IEEE Transactions on Control Systems Technology, 1994, 2(1):45-53. [25] TU Y Q, YANG G L, CAI Q Z, et al. Optimal design of SINS's Stewart platform bumper for restoration accuracy based on genetic algorithm[J]. Mechanism and Machine Theory, 2018, 124:42-54. [26] SHI X, ZHU S Y. Magnetic negative stiffness dampers[J]. Smart Materials and Structures, 2015, 24(7):072002. [27] ZHOU J X, WANG K, XU D L, et al. A six degrees-of-freedom vibration isolation platform supported by a hexapod of quasi-zero-stiffness struts[J]. Journal of Vibration and Acoustics, 2017, 139(3):034502. [28] VIRGIN L N, DAVIS R B. Vibration isolation using buckled struts[J]. Journal of Sound and Vibration, 2003, 260(5):965-973. |