[1] 郑无计, 李颖晖, 屈亮, 等. 基于正规形法的结冰飞机着陆阶段非线性稳定域[J]. 航空学报, 2017, 38(2):520714. ZHENG W J, LI Y H, QU L, et al. Nonlinear stability region of icing aircraft during landing phase based on normal form method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):520714(in Chinese). [2] HILTNERD W. A nonlinear aircraft simulation of ice contaminated tailplane stall[D]. Columbus:Ohio State University, 1998. [3] SafetyAdvisor. Aircraft icing[EB/OL]. (2013-05-01)[2018-05-08].http://www.aopa.org_media/Files/AOPA/Home/Pilot%20Resources/ASI/Safety%20Advisors/sall.pdf. [4] TIMOTHYA S, STEPHEN T M. Convection from a simulated NACA 0012 with icing roughness of different shape and thermal conductivity:AIAA-2016-3588[R]. Reston, VA:AIAA, 2016. [5] HARIRECHEO, VERDIN P, THOMPSON C P, et al. Explicit finite volume modeling of aircraft anti-icing and de-icing[J]. Journal of Aircraft, 2008, 45(6):1924-1936. [6] DEGENNAROA M, ROWLEY C W, MARTINELLI L. Uncertainty quantification for airfoil icing using polynomial chaos expansions[J]. Journal of Aircraft, 2015, 52(5):1404-1411. [7] POURYOUSSEFIS G, MIRZAEI M, NAZEMI M M, et al. Experimental study of ice accretion effects on aerodynamic performance of an NACA 23012 airfoil[J]. Chinese Journal of Aeronautics, 2016, 29(3):585-595. [8] ADDYH E, BROEREN A P, M G POTAPCZUK, et al. Ice accretions and full-scale Iced aerodynamic performance data for a two-dimensional NACA 23012 Airfoil:NASA/TP-2016-218348[R]. Washington, D.C.:NASA, 2016. [9] SOMMERWERKH, HORST P, BANSMER S. Studies on electro impulse de-icing of a leading edge structure in an icing wind tunnel:AIAA-2016-3441[R]. Reston, VA:AIAA, 2016. [10] BRAGGM B, HUTCHISON T, OLTMAN R, et al. Effect of ice accretion on aircraft flight dynamics:AIAA-2000-0360[R]. Reston, VA:AIAA, 2000. [11] RANAUDOR, MARTOS B, NORTON B, et al. Piloted simulation to evaluate the utility of a real time envelope protection system for mitigating in-flight icing hazards:AIAA-2010-7987[R]. Reston, VA:AIAA, 2010. [12] DICKEYE D, PRINCEN N H, BONET J T, et al. Wind tunnel model design and fabrication of a 5.75% scale blended-wing-body twin jet configuration:AIAA-2016-0008[R]. Reston, VA:AIAA, 2016. [13] BALACHANDRANS, ATKINS E M. Flight safety assessment and management to prevent loss of control due to in-flight icing:AIAA-2016-0094[R]. Reston, VA:AIAA, 2016. [14] 常士楠, 杨波, 冷梦尧, 等. 飞机热气防冰系统研究[J]. 航空动力学报, 2017, 32(5):1025-1034. CHANG S N, YANG B, LENG M Y, et al. Study on bleed air anti-icing system of aircraft[J]. Journal of Aerospace Power, 2017, 32(5):1025-1034(in Chinese). [15] 易贤, 王斌, 李伟斌, 等. 飞机结冰冰形测量方法研究进展[J]. 航空学报, 2017, 38(2):520700. YI X, WANG B, LI W B, et al. Research progress on ice shape measurement approaches for aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):520700(in Chinese). [16] 郭向东, 王梓旭, 李明, 等. 结冰风洞中液滴过冷特性数值研究[J]. 航空学报, 2017, 38(10):121254. GUO X D, WANG Z X, LI M, et al. Numerical study of supercooling characteristics of droplet in icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121254(in Chinese). [17] 杜雁霞, 桂业伟, 柯鹏, 等. 飞机结冰冰型微结构特征的分形研究[J]. 航空动力学报, 2011, 26(5):997-1002. DU Y X, GUI Y W, KE P, et al. Investigation on the ice type microstructure characteristics of aircraft icing based on the fractal theories[J]. Journal of Aerospace Power, 2011, 26(5):997-1002(in Chinese). [18] POKHARIYALD, BRAGG M B, HUTCHISON T, et al. Aircraft flight dynamics with simulated ice accretion:AIAA-2001-0541[R]. Reston, VA:AIAA, 2001. [19] REEHORSTA L, ADDY H E, COLANTONIO R O. Examination of icing induced loss of control and its mitigations:NASA/TM-2010-216912[R]. Washington, D.C.:NASA, 2010. [20] ADDYH E. Ice accretions and icing effects for modern airfoils:NASA/TP-2000-210031[R]. Washington, D.C.:NASA, 2000. [21] GINGRASD R, BAMHART B P, RANAUDO R J, et al. Development and implementation of a model driven envelope protection system for in-flight ice contamination:NASA/TM-2011-216960[R]. Washington, D.C.:NASA, 2011. [22] GINGRASD R, BAMHART B P, RANAUDO R J, et al. Envelope protection for in-flight ice contamination:NASA/TM-2010-216072[R]. Washington, D.C.:NASA, 2010. [23] ADDYH E, ORCHARD D, WRIGHT W B, et al. Altitude effects on thermal ice protection system performance:A study of an alternative approach:NASA/TM-2016-219081[R]. Washington, D.C.:NASA, 2016. [24] DETERSR W, DIMOCK G A, SELIG M S. Icing encounter flight simulator[J]. Journal of Aircraft, 2016, 43(5):1528-1537. [25] GUOL L, ZHU M H, NIE B W, et al. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system[J]. Chinese Journal of Aeronautics, 2017, 30(2):602-210. [26] MERRETJ M, HOSSAIN K N, BRAGG M B. Envelope protection and atmospheric disturbances in icing encounters:AIAA-2002-0814[R]. Reston, VA:AIAA, 2002. [27] ZHENGW J, LI Y H, QU L, et al. Dynamic envelope determination based on differential manifold theory[J]. Journal of Aircraft, 2017, 54(5):2005-2009. [28] KRAUSKOPFB, OSINGA H M, DOEDEL E J, et al. A survey of methods for computing(un)stable manifolds of vector fields[J]. International Journal of Bifurcation and Chaos, 2005, 15(3):763-791. [29] JORDANT, LANGFORD W, BELCASTRO C, et al. Development of a dynamically scaled generic transport model tested for flight research experiments[R]. Washington, D.C.:NASA, 2004. [30] KWATNYH G, DONGMO J T, CHANG B C, et al. Nonlinear analysis of aircraft loss of control[J]. Journal of Guidance, Control and Dynamics, 2013:36(1):149-162. [31] 蒋启登. 陆基飞机大下沉速度对称着陆试验方法[J]. 北京航空航天大学学报, 2013, 39(11):1421-1425. JIANG Q D. Flight test of high sink speed symmetric landing used in land-based aircraft strength verification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11):1421-1425(in Chinese). |