[1] ROOS F W, KEGELMAN J T. Aerodynamic characteristics of three generic forebodies at high angles of attack[C]//29th Aerospace Sciences Meeting. Reston, VA:AIAA, 1991:21437. [2] KEGELMAN J T, ROOS F W. Influence of forebody cross-section shape on vortex flowfield structure at high alpha[C]//9th Applied Aerodynamics Conference. Reston, VA:AIAA, 1991:53867. [3] MANGE R L, ROOS F W. The aerodynamics of a chined forebody[C]//29th Fluid Dynamics Conference. Reston, VA:AIAA, 1998:2903. [4] HALL R M. Influence of forebody cross-sectional shape on wing vortex burst location[C]//4th Applied Aerodynamics Conference. Reston, VA:AIAA, 1986:37845. [5] LOWSON M V, PONTON A J. Symmetry breaking in vortex flows on conical bodies[J]. AIAA Journal, 1992, 30(6):1576-1583. [6] TIAN W, DENG X Y, WANG Y K, et al. Study on flow behavior and structure over chined fuselage at high angle of attack[J]. Science China Technological Sciences, 2010, 53(8):2057-2067. [7] SHI W, DENG X Y, TIAN W, et al. Influence of artificial tip perturbation on asymmetric vortices flow over a chined fuselage[J]. Chinese Journal of Aeronautics, 2015, 28(4):1016-1022. [8] MA B F, DENG X Y. Vortex Interactions between chined forebody and strake[J]. Journal of Aircraft, 2006, 43(6):1953-1955. [9] MA B F, DENG X Y. Tip-disturbance effects on asymmetric vortex breakdown around a chined forebody[J]. Journal of Aircraft, 2008, 45(4):1098-1104. [10] 杨其德, 马明生, 余涛, 等. 一个非常规前体机身的流动显示研究[J]. 流体力学实验与测量, 1999, 13(1):64-72. YANG Q D, MA M S, YU T, et al. Flow visualization for an unconventional forebody[J]. Experiments and Measurements in Fluid Mechanics, 1999, 13(1):64-72(in Chinese). [11] ROOS F W, MAGNESS C L. Yaw Effects on the high-alpha flow field of a chined forebody[C]//32nd Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 1994:0073. [12] 刘刚, 邱玉鑫. 具有尖侧缘的非圆截面机身头部几何参数影响研究[J]. 实验流体力学, 2006, 20(4):54-58. LIU G, QIU Y X. Investigation of unconventional fore-body section geometry parameter's effect[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4):54-58(in Chinese). [13] SHI W, DENG X Y, WANG Y K. Interaction of asymmetric vortices over chined forebody/wing configuration at high angles of attack[C]//Asian-Pacific Conference on Aerospace Technology and Science, 2013:317-327. [14] ERICKSON G E, BRANDON J M. On the nonlinear aerodynamic and stability characteristics of a generic chine-forebody slender-wing fighter configuration[C]//5th Applied Aerodynamics Conference. Reston, VA:AIAA, 1987:49114. [15] ERICKSON G E, BRANDON J M. Low-speed experimental study of the vortex flow effects of a fighter forebody having unconventional cross-section[C]//12th Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 1985:43851. [16] HALL R M. Impact of fuselage cross section on the stability of a generic fighter[C]//16th Applied Aerodynamics Conference. Reston, VA:AIAA, 1998:32477 [17] JEANS T L, MCDANIEL D R, CUMMINGS R M, et al. Aerodynamic analysis of a generic fighter using delayed detached-eddy simulation[J]. Journal of Aircraft, 2009, 46(4):1326-1339. [18] MULLIN S. The evolution of the F-22 advanced tactical fighter(1992 Wright Brothers Lecture)[C]//Flight Simulation Technologies Conference. Reston, VA:AIAA, 1992:4188. [19] NGUYEN L T, FOSTER J V. Development of a preliminary high-angle-of-attack nose-down pitch control requirement for high-performance aircraft:NASA-TM-101684[R]. Washington, D.C.:NASA, 1990. [20] OGBURN M E, FOSTER J V, WILSON J, et al. Status of the validation of high-angle-of-attack nose-down pitch control margin design guidelines[C]//Flight Simulation and Technologies. Reston, VA:AIAA, 1993:3623. [21] LACKEY J. Pitch control margin at high angle of attack-quantitative requirements[C]//28th National Heat Transfer Conference. Reston, VA:AIAA 1992:4107. [22] BERRIER B L, RE R J. A review of thrust-vectoring schemes for fighter aircraft[C]//14th Joint Propulsion Conference. Reston, VA:AIAA, 1978:1023. [23] 钱丰学, 梁贞桧. 现代战斗机纵横向稳定性改进研究[C]//全国低跨超声速空气动力学文集第一卷. 北京:中国空气动力学会, 2001:116-120. QIAN F X, LIANG Z H. Improvement of longitudinal and lateral stability of modern aircraft[C]//Proceedings of National Conference on Subsonic, Transonic and Supersonic Aerodynamics. Beijing:CARS, 2001:116-120(in Chinese). [24] DONG C, DENG X Y, WANG Y K, et al. A new criterion to determine the position of vortex breakdown point[C]//Proceedings of 2010 Asia-Pacific International Symposium on Aerospace Technology. Xi'an:CSAA, 2010:137-140. |