[1] ROGER K. Aerothermal design for the HIFIRE flight vehicle:AIAA-2009-4034[R]. Reston, VA:AIAA, 2009. [2] THOMAS J J, JONATHAN P. HIFiRE-5b heat flux and boundary-layer transition:AIAA-2017-3134[R]. Reston, VA:AIAA, 2017. [3] ADAMCZAK D, BORG M, JULIANO T, et al. HIFiRE-1 and HIFiRE-5 test results:ADA605731[R]. Fort Belvoir, VA:Defense Technical Information Center, 2014. [4] ANDREW J N, RISHABH C. Measurement of aerothermal heating on HIFiRE-0:AIAA-2011-2356[R]. Reston, VA:AIAA, 2011. [5] ECKERT E R G, GOLDSTEIN R J. Measurement techniques in heat transfer:AGARD-130[R]. Neuilly sur Seine:AGARD, 1970. [6] COOK W J, FELDERMAN E J. Reduction of data from thin-film heat transfer gages:A concise numerical technique[J]. AIAA Journal, 1966, 4(3):561-562. [7] COOK W J. Unsteady heat transfer to a semi-infinite solid with arbitrary surface temperature history and variable thermal properties:ISU-ERI-AMES-675000[R]. Ames, IA:IOWA State University,1970. [8] MATTHEWS R K, RHUDY R W. Hypersonic wind tunnel test techniques:ADA284057[R]. Fort Belvoir, VA:Defense Technical Information Center, 1994. [9] 曾磊. 测热试验数据后处理方法及误差机理法分析[D]. 绵阳:中国空气动力研究与发展中心, 2012:140-150. ZENG L. Study on data processing method and error mechanism analysis of heat flux measurement in wind tunnel[D]. Mianyang:China Aerodynamics Research and Development Center, 2012:140-150(in Chinese). [10] 曾磊, 桂业伟, 王安龄, 等. 激波风洞驻点热流测量误差机理及其不确定度研究[J]. 实验流体力学, 2015, 29(5):15-25. ZENG L, GUI Y W, WANG A L, et al. Study on error mechanism and uncertainty assessment of heat flux measurement in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(5):15-25(in Chinese). [11] DE BAAR J H S, VENNIK J, NEELY A J. Numerical study of the influence of non-uniform wall temperature distribution on the hypersonic flow over a flat plate:AIAA-2017-2427[R]. Reston, VA:AIAA, 2017. [12] 张昊元, 宗文刚. 高超声速飞行器前缘缝隙流动数值模拟研究[J]. 宇航学报, 2014, 35(8):893-900. ZHANG H Y, ZONG W G. Numerical investigation of flow in leading-edge gap of hypersonic vehicle[J]. Journal of Astronautics, 2014, 35(8):893-900(in Chinese). [13] 邱波, 张昊元, 国义军, 等. 高超声速飞行器表面横缝旋涡结构及气动热环境数值模拟[J]. 航空学报, 2015, 36(11):3515-3521. QIU B, ZHANG H Y, GUO Y J, et al. Numerical investigation for vortexes and aerodynamic heating environment on transverse gap on hypersonic vehicle surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11):3515-3521(in Chinese). [14] 杨肖峰, 唐伟, 桂业伟, 等. 火星环境高超声速催化加热特性[J]. 宇航学报, 2017, 38(2):205-211. YANG X F, TANG W, GUI Y W, et al. Hypersonic catalytic aeroheating characteristics for mars entry process[J]. Journal of Astronautics, 2017, 38(2):205-211(in Chinese). [15] 过增元, 魏澍, 陈新广. 换热器强化的场协同原则[J]. 科学通报, 2003, 48(22):2324-2327. GUO Z Y, WEI S, CHEN X G. Principle of field coordination in heat exchanger[J]. Chinese Science Bulletin, 2003, 48(22):2324-2327(in Chinese). [16] 过增元. 换热器中的场协同原则及其应用[J]. 机械工程学报, 2003, 39(12):1-9. GUO Z Y. Principle of field coordination in heat exchanger and its application[J]. Chinese Journal of Mechanical Engineering, 2003, 39(12):1-9(in Chinese). [17] 邱波, 国义军, 张昊元, 等. 来流参数对防热瓦横缝旋涡结构及热环境的影响[J]. 航空学报, 2016, 37(3):761-770. QIU B, GUO Y J, ZHANG H Y, et al. Free stream parameters' effects on vortexes and aerodynamic heating environment in thermal protection tile transverse gaps[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):761-770(in Chinese). [18] 董维中, 高铁锁, 丁明松. 高超声速飞行器表面温度分布与气动热耦合数值研究[J]. 航空学报, 2015, 36(1):311-324. DONG W Z, GAO T S, DING M S. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):311-324(in Chinese). |