[1] KALMAN R. On the general theory of control systems[J]. IRE Transactions on Automatic Control, 1959, 4(3): 110.
[2] VISWANATHAN C N, LONGMAN R W, LIKINS P W. A degree of controllability definition-fundamental concepts and application to modal systems[J]. Journal of Guidance, Control, and Dynamics, 1984, 7(2): 222-230.
[3] 杜光勋, 全权. 输入受限系统的可控度及其在飞行控制中的应用[J]. 系统科学与数学, 2014, 34(12): 1578-1594. DU G X, QUAN Q. Degree of controllability and its application in aircraft flight control[J]. Journal of System Science and Mathematical Science, 2014, 34(12): 1578-1594 (in Chinese).
[4] YANG B, DU G, QUAN Q, et al. The degree of controllability with limited input and an application for hexacopter design[C]//2013 32nd Chinese Control Conference. Xi'an: Northwestern Polytechnical University, 2013: 113-118.
[5] KLEIN G, ONGAMAN R W, INDBERG R E. Computation of a degree of controllability via system discretization[J]. Journal of Guidance, Control, and Dynamics, 1982, 5(6): 583-588.
[6] 岳基隆, 张庆杰, 朱华勇. 微小型四旋翼无人机研究进展及关键技术浅析[J]. 电光与控制, 2010, 17(10): 46-52. YUE J L, ZHANG Q J, ZHU H Y. Research progress and key technologies of micro quadrotor UAVs[J]. Electronics Optics and Control, 2010, 17(10): 46-52 (in Chinese).
[7] SCARAMUZZA D. Aggressive quadrotor flight through narrow gaps with onboard sensing and computing using active vision[C]//Proceeding of the IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ: IEEE Press, 2017.
[8] 宿敬亚, 樊鹏辉, 蔡开元. 四旋翼飞行器的非线性 PID 姿态控制[J]. 北京航空航天大学学报, 2011, 37(9): 1054-1058. SU J Y, FAN P H, CAI K Y. Attitude control of quadrotor aircraft cia nonlinear PID[J]. Journal of Beijing University of Aeronautics and Astromautics, 2011, 37(9): 1054-1058 (in Chinese).
[9] 范云生, 曹亚博, 赵永生. 四旋翼飞行器轨迹跟踪控制器的设计与验证[J]. 仪器仪表学报, 2017, 38(3): 741-749. FAN Y S, CAO Y B, ZHAO Y S. Design and validation of trajectory tracking controller for quadrotor[J]. Chinese Journal of Scientific Instrument, 2017, 38(3): 741-749 (in Chinese).
[10] ISWANTO I, WAHYUNGGORO O, CAHYADI A I. Quadrotor path planning based on modified fuzzy cell decomposition algorithm[J]. Telecommunication Computing Electronics and Control, 2016, 14(2): 655-664.
[11] 吕亮. 具有执行器饱和的控制系统分析与设计[D]. 上海: 上海交通大学, 2010: 2-9. LU L. Analysis and design of control systems in the presence of actuator saturation[D].Shanghai: Shanghai Jiao Tong University, 2010: 2-9 (in Chinese).
[12] CIESLAK J, HENRY D, ZOLGHADRI A. Fault tolerant flight control: From theory to piloted flight simulator experiments[J]. IET Control Theory & Applications, 2010, 4(8): 1451-1464.
[13] VALENTI M, BETHKE B, FIORE G, et al. Indoor multi-vehicle flight testbed for fault detection,isolation, and recovery[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA: AIAA, 2006.
[14] GORDON L J. Principles of helicopter aerodynamics[M]. Cambridge: Combridge University Press, 2000: 115-124.
[15] BOUABDALLAH S. Design and control of quadrotors with application to autonomous flying[D]. Lausanne: Swiss Federal Institute of Technology in Lausanne, 2007: 16-18.
[16] POUNDS P, MAHONY R, CORKE P. Modelling and control of a large quadrotor robot[J]. Control Engineering Practice, 2010, 18(7): 691-699.
[17] CUTLER M J. Design and control of an auton-omous variable-pitch quadrotor helicopter[D]. Massachusetts: Massachusetts Institute of Technology, 2012: 34-41.
[18] CUTLER M, URE N K, MICHINI B, et al. Comparison of fixed and variable pitch actuators for agile quadrotors[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA: AIAA, 2011.
[19] BRESCIANI T. Modelling, identification and control of a quadrotor helicopter[D]. Lund: Lund University, 2008: 22-27.
[20] HEMATI N, LEU M C. A complete model characterization of brushless DC motors[J]. IEEE Transactions on Industry Applications, 1992, 28(1): 172-180. |