[1] SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84:1-28. [2] BUSEMANN A. Aerodynamic lift at supersonic speeds[C]//The 5th Volta Aerodynamic Conference, 1935. [3] BUSEMANN A. The relation between minimized drag and noise at supersonic speed[C]//The High-speed Aeronautics Conference, 1955. [4] PATIDAR V K, YADAV R, JOSHI S. Numerical investigation of the effect of stagger on the aerodynamic characteristics of a Busemann biplane[J]. Aerospace Science & Technology, 2016, 55:252-263. [5] YAMASHITA H, KURATANI N, YONEZAWA M, et al. Wind tunnel testing on start/unstart characteristics of finite supersonic biplane wing[J]. International Journal of Aerospace Engineering, 2013(6):1-10. [6] IGRA D, ARAD E. Parametric study of an axisymmetric Busemann biplane configuration[J]. Journal of Aircraft, 2009, 46(6):1930-1937. [7] MARUYAMA D, KUSUNOSE K, MATSUSHIMA K, et al. Aerodynamic analysis and design of Busemann biplane:Towards efficient supersonic flight[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal of Aerospace Engineering, 2012, 226(2):217-238. [8] XU Y Z, XU Z Q, LI S G, et al. A hypersonic lift mechanism with decoupled lift and drag surfaces[J]. Science China:Physics, Mechanics & Astronomy, 2013, 56(5):981-988. [9] HU R, JAMESON A, WANG Q Q. Adjoint-based aerodynamic optimization of supersonic biplane airfoils[J]. Journal of Aircraft, 2012, 49(3):802-814. [10] YONEZAWA M, YAMASHITA H, OBAYASHI S, et al. Two-dimensional computational fluid dynamics analysis of hysteresis around supersonic biplane in supersonic flow[J]. Journal of the Japan Society for Aeronautical & Space Sciences, 2009, 57:131-133. [11] LICHER R M. Optimum two-dimensional multiplanes in supersonic flow[C]//Douglass Aircraft Conference, 1955. [12] KUSUNOSE K, MATSUSHIMA K, MARUYAMA D. Supersonic biplane-A review[J]. Progress in Aerospace Sciences, 2011, 47:53-87. [13] 赵承熙,叶正寅,华如豪. 新型目标压力分布下的Licher双翼反设计方法研究[J]. 空气动力学学报, 2015, 33(5):610-616. ZHAO C Y,YE Z Y,HUA R H. Inverse design method for the Licher biplane with a new target pressure distribution[J]. Acta Aerodynamica Sinica, 2015, 33(5):610-616(in Chinese). [14] ZHAO C X, HUA R H, YE Z Y, et al. Unsteady aerodynamic characteristics of the pitched supersonic biplane[J]. Applied Mechanics & Materials, 2015, 798:523-530. [15] TIAN Y, AGARWAL R K. Shape optimization of Busemann-type biplane airfoil for drag reduction under non-lifting and lifting conditions using genetic algorithms[M]//Optimization Algorithms-Methods and Applications. 2015. [16] SUGA Y, YAMAZAKI W. Aerodynamic uncertainty quantification of supersonic biplane airfoil via polynomial chaos approach[C]//AIAA Non-Deterministic Approaches Conference. Reston, VA:AIAA, 2015. [17] MOELDER S, SZPIRO E J. Busemann inlet for hypersonic speeds[J]. Journal of Spacecraft & Rockets, 2015, 3(8):1303-1304. [18] MARUYAMA D, MATSUSHIMA K, KUSUNOSE K, et al. Three-dimensional aerodynamic design of low-wave-drag supersonic biplane using inverse problem method[J]. Journal of Aircraft, 2009, 46(6):1906-1918. [19] YONEZAWA M, OBAYASHI S. Aerodynamic performance of the three-dimensional lifting supersonic biplane[J]. Journal of Aircraft, 2010, 47(3):983-991. [20] ZHAO C X, CHEN Z H, YE Z Y. Inverse design method for a supersonic ring wing based on the Busemann concept[J]. Applied Mechanics & Materials, 2015, 798:602-608. [21] 刘枫. 动网格技术研究及其在高超声速流动中的应用[D]. 长沙:国防科学技术大学, 2009. LIU F. Study of moving mesh technology and its application in hypersonic flow[D]. Changsha:University of Defense Technology, 2009(in Chinese). [22] 刘磊. 高超声速飞行器热气动弹性特性及相似准则研究[D]. 绵阳:中国空气动力研究与发展中心, 2014. LIU L. Study on the characteristics and similarity criteria of aerothermoelasticity for hypersonic vehicle[D]. Mianyang:China Aerodynamics Research and Development Center, 2014(in Chinese). |