[1] 王家斌, 王炫润, 李劭晨, 等. 含孤岛型腔铣削加工的螺旋刀轨生成算法[J]. 航空学报, 2016, 37(5): 1689-1695. WANG J B, WANG X R, LI S C, et al. Spiral tool path generation algorithm for milling pocket with island[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5): 1689-1695 (in Chinese).
[2] 韩飞燕, 张定华, 张莹, 等. 基于虚拟控制面约束的机匣类零件工序模型建立方法[J]. 航空学报, 2015, 36(10): 3465-3474. HAN F Y, ZHANG D H, ZHANG Y, et al. A method of generate intermediate process models for casing parts based on virtual control surface constraints[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10): 3465-3474 (in Chinese).
[3] 高鑫, 李迎光, 刘长青, 等. 基于CAM/CNC集成的航空大型薄壁件数控加工在机刀轨调整方法[J]. 航空学报, 2015, 36(12): 3980-3990. GAO X, LI Y G, LIU C Q, et al. An adjusting method of tool path on machine for NC manufacture of large thin-walled aeronautical part based on integration of CAM and CNC[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3980-3990 (in Chinese).
[4] 韩雄, 汤立民. 大型航空结构件数控加工装备与先进加工技术[J]. 航空制造技术, 2009(1): 44-47. HAN X, TANG L M. NC machining equipment and advanced machining technology for large aircraft component[J]. Aeronautical Manufacturing Technology, 2009(1): 44-47 (in Chinese).
[5] LIU C, LI Y, GAO X. Feature-based adaptive numerical control programming method for the environment of changing manufacturing resources[J]. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture, 2015, 13(5): 237-247.
[6] 张振明, 许建新, 贾晓亮, 等. 现代CAPP技术与应用[M]. 西安: 西北工业大学出版社, 2003: 23-24. ZHANG Z M, XU J X, JIA X L, et al. Modern CAPP technology and application [M]. Xi'an: Northwestern Polytechnical University Press, 2003: 23-24 (in Chinese).
[7] 吕俊林, 江平宇. 智能三维CAPP的发展方向及核心技术[J]. CAD/CAM与制造业信息化, 2009(11): 93-95. LU J L, JIANG P Y. The development direction of intelligent 3 d CAPP and its core technology [J]. CAD/CAM and Manufacturing Informatization, 2009(11): 93-95 (in Chinese).
[8] SHAH J J, MANTYLA M. Parametric and feature-based CAD/CAM: concepts, techniques, and applications[M]. New York: Wiley-Interscience Publication, 1995: 9-15
[9] International Standardization Organization. ISO 10303 STEP AP224 Industrial automatic systems and integration-product data representation and exchange-application protocol: mechanical product definition for process planning using machining features[S].
[10] SRIDHARAN N, SHAH J J. Recognition of multi-axis milling features: Part I—topological and geometric characteristics[J]. Journal of Computing & Information Science in Engineering, 2004, 4(1): 242-250.
[11] TSENG Y J, JOSHI S B. Recognition of interacting rotational and prismatic machining features from 3-D mill-turn parts[J]. International Journal of Production Research, 1998, 36(11): 3147-3165.
[12] BORKAR B R, PURI Y M. Automatic extraction of machining features from prismatic parts using step for downstream applications[J]. Journal of the Institution of Engineers, 2015, 96(3): 231-243.
[13] EUM K, KANG M, KIM G, et al. Ontology-based modeling of process selection knowledge for machining feature[J]. International Journal of Precision Engineering & Manufacturing, 2013, 14(10): 1719-1726.
[14] LIU J, MA Y S. 3D level-set topology optimization: A machining feature-based approach[J]. Structural & Multidisciplinary Optimization, 2015, 52(3): 563-582.
[15] LIU J, LIU X, CHENG Y, et al. An approach to mapping machining feature to manufacturing feature volume based on geometric reasoning for process planning[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015 (in press).
[16] GIVEHCHI M, HAGHIGHI A, WANG L. Generic machining process sequencing through a revised enriched machining feature concept[J]. Journal of Manufacturing Systems, 2015, 37: 564-575.
[17] HUANG R, ZHANG S, BAI X, et al. An effective NC machining process reuse approach by merging feature similarity assessment and data mining for CAM models[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229(7): 1229-1242.
[18] YAN X, YAMAZAKI K. Recognition of machining features and feature topologies from NC programs[J]. Computer Aided Design, 2000, 32(10): 605-616.
[19] 张辉, 张健, 张胜文, 等. 自定义加工特征的船用柴油机箱体件CAD/CAM/CAPP集成系统[J]. 计算机集成制造系统, 2014, 20(9): 2086-2092. ZHANG H, ZHANG J, ZHANG S W, et al. CAD/CAPP/CAM integration system for box parts of marine diesel engine based on user defined machining feature[J]. Computer Integrated Manufacturing Systems, 2014, 20(9): 2086-2092 (in Chinese).
[20] 刘雪梅, 周易, 黄剑锋. 基于制造资源的复杂箱体零件加工特征识别方法[J]. 计算机集成制造系统, 2015, 21(12): 3166-3173. LIU X M, ZHOU Y, HUANG J F. Machining feature recognition method for complicated boxy parts based on manufacturing resources[J]. Computer Integrated Manufacturing Systems, 2015, 21(12): 3166-3173 (in Chinese).
[21] 苟凌怡, 熊光楞, 谢金崇, 等. 基于XML的产品信息集成关键技术研究[J]. 计算机辅助设计与图形学学报, 2004, 14(2): 105-110. GOU L Y, XIONG G L, XIE J C, et al. Research on the key technology in the integration of product information based on XML[J]. Journal of Computer-Aided Design & Computer Graphics, 2004, 14(2): 105-110 (in Chinese). |