[1] WU Z H,BROWN C A. A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-, radial, and mixed-flow types:NACA TN-2604[R]. Washington, D.C.:NACA, 1952.
[2] CREVELING H F, CARMODY R H. Axial flow compressor design computer programs incorporating full radial equilibrium, Part I-Flow path and radial distribution of energy specified (PROGRAM Ⅱ):NASA CR-54532[R]. Washington, D.C.:NASA, 1968.
[3] CREVELING H F, CARMODY R H. Axial flow compressor design computer programs incorporating full radial equilibrium, Part Ⅱ-Radial distribution of total pressure and flow path or axial velocity ratio specified (PROGRAM Ⅱ):NASA CR-54531[R]. Washington, D.C.:NASA, 1968.
[4] FROST D H. A Streamline curvature through flow computer program for analysing the flow through axial-flow turbomachines:RM312-ARC3687[R]. London:National Gas Turbine Establishment, 1972.
[5] MARSH H. A digital computer program for the through-flow fluid mechanics in an arbitrary turbomachine using a matrix method:RM 3509[R]. London:National Gas Turbine Establishment, 1968.
[6] DAMLE S V. Throughflow method for turbomachines using Euler solvers:AIAA-1996-0010[R]. Reston:AIAA, 1996.
[7] 季路成, 孟庆国, 周盛. 叶轮机通流计算的时间推进方法[J]. 航空动力学报, 1999, 14(1):24-26. JI L C, MENG Q G, ZHOU S. Time-marching method for through-flow computation of turbomachinery[J]. Journal of Aerospace Power, 1999, 14(1):24-26 (in Chinese).
[8] 施鑫, 赵拥军, 季路成, 等. 时间推进通流气动设计方法的探索和分析[J]. 工程热物理学报, 2002, 23(增刊):50-53. SHI X, ZHAO Y J, JI L C, et al. Explorations and analysis about time-marching through-flow method[J]. Journal of Engineering Thermophysics, 2002, 23(Suppl):50-53 (in Chinese).
[9] NOVAK R A. Streamline curvature computing procedure for fluid-flow problems[J]. Journal of Engineering for Power, 1967, 89(4):478-490.
[10] WENNERSTROM A J. On the treatment of body forces in the radial equilibrium equation of turbomachinery:AD-A008127/ARL 75-0052[R]. Washington, D.C.:DTIC/ARL, 1975..
[11] HEARSEY R M. Program HT0300 NASA 1994:D6-81569TN[R]. Washington, D.C.:NASA, 1994.
[12] LAW C H. A computer program for variable-geometry single-stage axial compressor test data analysis (UD0400):AD-A106676/AFWAL-TR-81-2078[R]. Washington, D.C.:DTIC/ARL, 1981.
[13] 闫转运, 成金鑫, 陈江. 多级轴流压气机通流造型一体化设计研究[J]. 工程热物理学报, 2016, 37(6):1218-1224. YAN Z Y, CHEN J X, CHEN J. Integrated through-flow and blade shape design of multi-stage axial flow compressor[J]. Journal of Engineering Thermophysics, 2016, 37(6):1218-1224 (in Chinese).
[14] 《航空发动机设计手册》总编委会. 航空发动机设计手册第8册-压气机[M]. 北京:航空工业出版社, 1999:109-114. "Aero Engine Design Handbook" Editorial Board. Aero engine design handbook, Volume 8-Compressor[M]. Beijing:Aviation Industry Press, 1999:109-114 (in Chinese).
[15] 胡骏, 赵运生, 丁宁. 进气畸变对大涵道比涡扇发动机稳定性的影响[J]. 航空发动机, 2013, 39(6):6-12. HU J, ZHAO Y S, DING N. Investigation of influence of inlet distortion on high bypass ratio turbofan engine stability[J]. Aeroengine, 2013, 39(6):6-12 (in Chinese).
[16] 周旭. 民用大涵道比风扇叶片气动设计研究[D]. 南京:南京航空航天大学, 2012. ZHOU X. Research on aerodynamic design of civil high bypass ratio fan blades[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
[17] 王志强, 沈锡钢, 胡骏. 大涵道比涡扇发动机风扇转子叶片优化[J]. 航空动力学报, 2014, 29(9):2202-2209. WANG Z Q, SHEN X G, HU J. Optimization of fan rotor blade in high bypass ratio turbofan engine[J]. Journal of Aerospace Power, 2014, 29(9):2202-2209 (in Chinese).
[18] 胡应交. 民用大涵道比风扇气动设计[D]. 哈尔滨:哈尔滨工业大学, 2010. HU Y J. Aerodynamic design of civilian high bypass ratio fan[D]. Harbin:Harbin Institute of Technology, 2010 (in Chinese).
[19] 朱芳, 陈云永, 卫飞飞, 等. 某民用大涵道比涡扇发动机风扇缩尺试验件气动性能数值仿真[J]. 航空动力学报, 2013, 28(7):1539-1548. ZHU F, CHEN Y Y, WEI F F, et al. Numerical simulation of aerodynamic performance of scaled fan of a civil high-bypass-ratio turbofan engine[J]. Journal of Aerospace Power, 2013, 28(7):1539-1548 (in Chinese).
[20] 高丽敏, 李瑞宇, 曾瑞慧. 大涵道比涡扇发动机风扇长短叶片结构:中国, CN104632701A[P]. 2015. GAO L M, LI R Y, ZENG R H. Short splitter blade structure of high bypass ratio turbofan engine fan:China, CN104632701A[P]. 2015 (in Chinese).
[21] MOORE R D, REID L. Design and overall performance of four highly loaded, high-speed inlet stages for an advanced high-pressure-ratio core compressor:NASA-TP-1337[R]. Washington, D.C.:NASA, 1978.
[22] DUNHAM J. CFD Validation for propulsion system components:AGARD-AR-355[R]. Neuillysurseine:AGARD, 1998.
[23] SUDER K L. Experimental investigation of the flow field in a transonic, axial flow compressor with respect to the development of blockage and loss:NASA-TM-107310[R]. Washington, D.C.:NASA, 1996.
[24] FROST G R, WENNERSTROM A J. Thedesign of axial compressor airfoils using arbitrary camber lines:AD 765165/ARL 73-0107[R]. Washington, D.C.:DTIC/ARL, 1973.
[25] FROST G R, HEARSEY R M, WENNERSTROM A J. A computer program for the specification of axial compressor airfoils:AD0756879/ARL 72-0171[R]. Washington, D.C.:DTIC/ARL, 1972.
[26] 吴宏, 李秋实, 宋亚慧, 等. 风扇通流设计中环量分布形式的探讨[J]. 工程热物理学报, 2008, 29(1):43-45. WU H, LI Q S, SONG Y H, et al. Effect of swirl distribution on fan through flow design[J]. Journal of Engineering Thermophysics, 2008, 29(1):43-45 (in Chinese).
[27] MILLER G R, LEWIS J G W, HARTMANN M J. Shock losses in transonic compressor blade rows[J]. Journal of Engineering for Gas Turbines & Power, 1961, 83(3):235-241. |