航空学报 > 2016, Vol. 37 Issue (S1): 80-90   doi: 10.7527/S1000-6893.2016.0172

高超声速飞行器纵向大攻角非线性失稳分析与控制

苏二龙1,2, 罗建军1, 闵昌万2   

  1. 1. 西北工业大学 航天飞行动力学技术重点实验室, 西安 710072;
    2. 中国运载火箭技术研究院 空间物理重点实验室, 北京 100076
  • 收稿日期:2016-05-10 修回日期:2016-05-27 出版日期:2017-01-10 发布日期:2016-07-12
  • 通讯作者: 罗建军,Tel.:029-88493350,E-mail:jjluo@nwpu.edu.cn E-mail:jjluo@nwpu.edu.cn
  • 作者简介:苏二龙,男,博士。主要研究方向:高超声速飞行器动力学,制导与控制。E-mail:suerlong050251@163.com;罗建军,男,博士,教授,博士生导师。主要研究方向:航天飞行器制导,导航与控制。Tel.:029-88493350,E-mail:jjluo@nwpu.edu.cn;闵昌万,男,博士,研究员。主要研究方向:飞行器设计。Tel.:010-86747650,E-mail:minchangwan@126.com

Analysis and control of nonlinear loss of stability for longitudinal flight dynamics of hypersonic vehicle with high angle of attack

SU Erlong1,2, LUO Jianjun1, MIN Changwan2   

  1. 1. Science and Technology on Aerospace Flight Dynamics Laboratory, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Science and Technology on Space Physics Laboratory, China Academy of Launch Vehicle Technology, Beijing 100076, China
  • Received:2016-05-10 Revised:2016-05-27 Online:2017-01-10 Published:2016-07-12

摘要:

针对滑翔式高超声速飞行器大攻角纵向失稳问题,基于连续算法和分岔理论,求解并分析了多特征点单参数分岔图,对平衡分支的稳定性和突变点进行了分析。结合高超声速飞行器大包线飞行特性,求解并分析了双参数分岔,并计算了稳定分支曲面和不稳定分支曲面,从全包线范围揭示了高超声速飞行器大攻角失稳特性。为了实现高超声速飞行器的稳定控制,基于非线性动态逆和分阶思想,设计了非线性控制器,并计算了非线性开环闭环系统的全局特征根分布,结合所提出的一种基于连续算法的非线性闭环系统全局性能评估方法,评估并分析得出非线性控制器的有效性和较优的全局性能。最后,对闭环系统进行了时间历程仿真,进一步验证了非线性控制器的有效性。

关键词: 高超声速飞行器, 纵向大攻角飞行, 分岔突变, 非线性失稳, 非线性控制

Abstract:

Bifurcation and continuation method is employed to address the issue of longitudinal loss of stability of high angle of attack of hypersonic glide vehicle. Based on the obtained codimension 1 equilibrium bifurcation branches presented in phase-parameter space, the stability of the branches and catastrophe are analyzed. The codimension 2 equilibrium bifurcation branches are then presented in phase-parameter space. The 3D surface of equilibrium for the full Mach number and angle of attack parameter space are given, including stable and unstable branch surfaces. The nonlinear dynamic inversion is utilized to design the controller for longitudinal dynamics. The overall open-loop and closed-loop eigenvalue are plotted. A new evaluation strategy for nonlinear closed-loop dynamics is proposed to evaluate the overall performance of the designed controller. Time-history simulation is combined to verify the efficacy and high performance of the controller.

Key words: hypersonic vehicle, longitudinal flight with high angle of attack, bifurcation and catastrophe, nonlinear loss of stability, nonlinear control

中图分类号: